Main Article Content
Abstract
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Mariana, “Pendekatan Regresi Spasial dalam Pemodelan Tingkat Pengangguran Terbuka”, Jurnal Matematika dan Pembelajarannya, IAIN Ambon, Vol. 1, No. 1, pp. 42-63, 2013.
- J. Jiang, L. Luo, P. Xu, and P. Wang, “How Does Social Development Influence Life Expectancy? A Geographically Weighted Regression Analysis in China”, Int J Public Health, Vol. 163, pp. 95-104, October 2018.
- N. Lutfiani, S. Sugiman, S. Mariani, “Pemodelan Geographically Weighted Regression (GWR) dengan Fungsi Pembobot Kernel Gaussian dan Bi-Square”, UNNES Journal of Mathematics, Vol. 8, No. 1, pp. 82-91, 2019.
- BPS, Badan Pusat Statistika, [Online]. Available: https://jatim.bps.go.id/.
- N. R. Draper, and H. Smith, Applied Regression Analysis, New York: John Wiley and Sons Inc, 1998.
- A. R. Tizona, R. Goejantoro, and Wasono, “Pemodelan Geographically Weighted Regression dengan Fungsi Pembobot Adaptive Kernel Bi-Square untuk Angka Kesakitan Demam Berdarah di Kalimantan Timur Tahun 2015”, Jurnal Eksponensial, Vol. 8, No. 1, pp. 87-94, 2017.
- A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chicester: John Wiley and Sons, 2002.
- C. Brunsdon, A. S. Fotheringham, and M. Charlton, “Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity”, Geographical Analysis, Vol. 28, No. 4, pp. 281-298, 1996.
- C. Chasco, I. Garcia, J. Vicens, “Modeling Spastial Variations in Household Disposible Income with Geographically Weighted Regression”, Munich Personal RePEc Archive (MPRA), [Online]. Available: https://mpra.ub.uni-muenchen.de/1682/.
- H. Yasin, “Pemilihan Variabel pada Model Geographically Weighted Regression”, Media Statistika, Universitas Diponegoro, Vol. 4, No. 2, pp. 63-72, 2011.
- I. Nurhuda, and I. G. N. M. Jaya, “Pemodelan Kriminal di Jawa Timur dengan Metode Geograhically Weighted Regression (GWR)”, Jurnal Matematika MANTIK, UIN Sunan Ampel Surabaya, Vol. 4, No. 2, pp. 150-158, 2018.
References
Mariana, “Pendekatan Regresi Spasial dalam Pemodelan Tingkat Pengangguran Terbuka”, Jurnal Matematika dan Pembelajarannya, IAIN Ambon, Vol. 1, No. 1, pp. 42-63, 2013.
J. Jiang, L. Luo, P. Xu, and P. Wang, “How Does Social Development Influence Life Expectancy? A Geographically Weighted Regression Analysis in China”, Int J Public Health, Vol. 163, pp. 95-104, October 2018.
N. Lutfiani, S. Sugiman, S. Mariani, “Pemodelan Geographically Weighted Regression (GWR) dengan Fungsi Pembobot Kernel Gaussian dan Bi-Square”, UNNES Journal of Mathematics, Vol. 8, No. 1, pp. 82-91, 2019.
BPS, Badan Pusat Statistika, [Online]. Available: https://jatim.bps.go.id/.
N. R. Draper, and H. Smith, Applied Regression Analysis, New York: John Wiley and Sons Inc, 1998.
A. R. Tizona, R. Goejantoro, and Wasono, “Pemodelan Geographically Weighted Regression dengan Fungsi Pembobot Adaptive Kernel Bi-Square untuk Angka Kesakitan Demam Berdarah di Kalimantan Timur Tahun 2015”, Jurnal Eksponensial, Vol. 8, No. 1, pp. 87-94, 2017.
A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chicester: John Wiley and Sons, 2002.
C. Brunsdon, A. S. Fotheringham, and M. Charlton, “Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity”, Geographical Analysis, Vol. 28, No. 4, pp. 281-298, 1996.
C. Chasco, I. Garcia, J. Vicens, “Modeling Spastial Variations in Household Disposible Income with Geographically Weighted Regression”, Munich Personal RePEc Archive (MPRA), [Online]. Available: https://mpra.ub.uni-muenchen.de/1682/.
H. Yasin, “Pemilihan Variabel pada Model Geographically Weighted Regression”, Media Statistika, Universitas Diponegoro, Vol. 4, No. 2, pp. 63-72, 2011.
I. Nurhuda, and I. G. N. M. Jaya, “Pemodelan Kriminal di Jawa Timur dengan Metode Geograhically Weighted Regression (GWR)”, Jurnal Matematika MANTIK, UIN Sunan Ampel Surabaya, Vol. 4, No. 2, pp. 150-158, 2018.