Main Article Content

Abstract

Maternal Mortality Rate (MMR) is the number of deaths of women within 42 days after childbirth or during pregnancy. Objective: This study aims to identify factors affecting MMR in East Java and compare the performance of the Generalized Poisson Regression (GPR) model with Poisson regression. The method used is Generalized Poisson Regression, a regression model for count data, which extends Poisson regression to overcome the problem of overdispersion or underdispersion with data derived from the East Java Health Office, including MMR as the dependent variable, as well as five variables that are thought to affect it in 38 districts/cities. The GPR model proved superior to Poisson regression with an Akaike Information Criterion (AIC) value of 239.515 to identify factors affecting maternal mortality. Factors such as delivery handled by health workers, K6 visits by pregnant women, provision of diphtheria-tetanus immunization, and obstetric complications affect MMR in East Java in 2022.

Keywords

Maternal Mortality Rate Health Worker East Java Poisson Regression GPR

Article Details

How to Cite
pratiwi, Y. I., Khaulasari, H., Farida, Y., & Ferdani, A. (2025). Analysis of Factors that Influence Maternal Mortality Rates Using Generalized Poisson Regression. Enthusiastic : International Journal of Applied Statistics and Data Science, 5(2), 118–129. https://doi.org/10.20885/enthusiastic.vol5.iss2.art2

References

  1. A. Suparman, “Implementasi kebijakan program pelayanan kesehatan dalam rangka menurunkan AKI dan AKN di Puskesmas Sukaraja Kabupeten Sukabumi,” J. Moderat, vol. 6, no. 4, pp. 868–891, 2020.
  2. B. Setiawan and H. Nurcahyanto, “Analisis peran stakeholders dalam implementasi kebijakan penanggulangan angka kematian ibu studi kasus Kecamatan Pedurungan Kota Semarang,” J. Public Policy Manag. Rev., vol. 9, no. 2, pp. 127–144, Apr. 2020, doi: 10.14710/jppmr.v9i2.27351.
  3. I.P. Sakti, “Implementasi program Gerakan Desa Sehat dan Cerdas (GDSC) di Desa Bulu Kecamatan Balen Kabupaten Bojonegoro (studi pada parameter sehat indikator angka kematian ibu dan angka kematian bayi),” Publika, vol. 5, no. 3, pp. 1–8, 2017, doi: 10.26740/publika.v5n3.p%25p.
  4. K.S. Joseph et al., “Maternal mortality in the United States: Are the high and rising rates due to changes in obstetrical factors, maternal medical conditions, or maternal mortality surveillance?,” Am. J. Obstet. Gynecol., vol. 230, no. 4, pp. 440.e1-440.e13, Apr. 2024, doi: 10.1016/J.AJOG.2023.12.038.
  5. Kementerian Kesehatan Republik Indonesia, “Profil Kesehatan Indonesia 2023,” 2024. [Online]. Available: https://drive.google.com/file/d/1PGxyh-pgOo-5FSY54OARHPmN6xdXQijE/view
  6. E. Widiyana, “Angka kematian ibu dan bayi di Jatim tembus 3.671 kasus,” detikJatim. Accessed: May 15, 2024. [Online]. Available: https://www.detik.com/jatim/berita/d-6594660
  7. S.N. Aulele and A. G. Heumasse, “Analisis faktor faktor yang mempengaruhi jumlah kematian ibu di provinsi maluku dengan menggunakan regresi Poisson, ” J. EurekaMatika, vol. 9, no. 2, pp. 151–158, 2021, doi: 10.17509/jem.v9i1.33244.
  8. P.R. Chaniago, D. Devianto, and I.R. HG, “Analisis faktor risiko angka kematian ibu dengan pendekatan regresi Poisson,” J. Mat. UNAND, vol. 7, no. 2, pp. 126–131, 2019, doi: 10.25077/jmu.7.2.126-131.2018.
  9. D. Rahmadini, I.N. Manfaati, and P.A. Rismawati, “Pemodelan Bivariate generalized Poisson regression pada kasus angka kematian di Provinsi Jawa Tengah,” Pros. Semin. Nas. UNIMUS, vol. 6, pp. 401–410, 2023.
  10. M. Riski and S.A. Hamid, “Penyuluhan, Pemeriksaan status gizi dan pemberian tablet fe pada ibu hamil,” Community Dev. J., J. Pengabdi. Masy., vol. 3, no. 3, pp. 2035–2037, 2022, doi: 10.31004/cdj.v3i3.9868.
  11. G.R.A. Gunawan, N. Ananda, and S.L. Imtiyaaz, “Pelaksanaan Program penurunan angka kematian ibu di masa pandemi COVID-19,” unpublished.
  12. S.M. Herlina, Y. Ulya, R. Pricillia Yunika, and S. Sufiyana, “Peran kader terhadap pelaksanaan program Perencanaan Persalinan danan Pencegahan Komplikasi (P4K) dalam menurunkan angka kematian ibu,” J. Fundus, vol. 2, no. 2, pp. 42–51, Mar. 2022, doi: 10.57267/fundus.v2i2.247.
  13. B. Yadav et al., “Can generalized Poisson model replace any other count data models? An evaluation,” Clin. Epidemiol. Glob. Heal., vol. 11, 2021, Art. no 100774, doi: 10.1016/j.cegh.2021.100774.
  14. Dinas Kesehatan Provinsi Jawa Timur, “Profil Kesehatan Provinsi Jawa Timur Tahun 2022,” 2023. [Online]. Available: https://dinkes.jatimprov.go.id/userfile/dokumen/Profil Kesehatan Jatim 2022.pdf
  15. D.A. Soedyafa, L. Rochmawati, and I. Sonhaji, “Koefisien korelasi (R) dan koefisien determinasi (R2),” J. Penelit., vol. 5, no. 4, pp. 289–296, Dec. 2020, doi: 10.46491/jp.v5i4.544.
  16. M.J. Badriawan and S. Melaniani, “Aplikasi generalized Poisson Regression untuk memodelkan faktor yang mempengaruhi jumlah kasus baru difteri di Provinsi Jawa Timur tahun 2018,” Media Gizi Kesmas., vol. 12, no. 2, pp. 860–869, 2023, doi: 10.20473/mgk.v12i2.2023.860-869.
  17. W. D. Tassi, M. Sinaga, dan R. R. Riwu, “Analisis faktor-faktor yang berhubungan dengan perilaku ibu hamil dalam pemanfaatan pelayanan antenatal care (K4) di wilayah kerja Puskesmas Tarus,” Media Kesehat. Masy., vol. 3, no. 2, pp. 175–185, 2021, doi: 10.35508/mkm.v6i2.
  18. I.M.Z. Subarkah, R. Wahyuningtia, and M. Hildha, “Modeling the number of foreign tourist visits to Indonesia in 2020 using GWPR method,” Enthusiastic, vol. 4, no. 2, pp. 143–151, 2024, doi: 10.20885/enthusiastic.vol4.iss2.art6.
  19. F.D.G. Maneking, D.T. Salaki, and D. Hatidja, “Model regresi Poisson tergeneralisasi untuk anak gizi buruk di Sulawesi Utara,” J. Ilm. Sains, vol. 20, no. 2, pp 141–146, Oct. 2020, doi: 10.35799/jis.20.2.2020.29133.
  20. J.U. Ibeji, T. Zewotir, D. North, and L. Amusa, “Modelling fertility levels in Nigeria using generalized Poisson regression-based approach,” Sci. African, vol. 9, Sep. 2020, Art. no e00494, doi: 10.1016/j.sciaf.2020.e00494.