Main Article Content

Abstract

Environmental pollution is an unsettling problem for everyone and the ecosystem which can be caused by poorly managed waste originated from the final output of industrial production processed. It can negatively impact the surrounding environment if it is not handled properly. Therefore, the waste must be processed until it meets the predetermined characteristic standards before being disposed of. Among the actions that can be taken is carrying quality control. This study aims to evaluate and characterize the quality of the waste produced. The methods used were the generalized variances and Hotelling’s T2 control charts. The data used for this research was the characteristics of liquid waste from a sugar factory industry, taken from May to September 2023. The quality control results, which were obtained using the generalized Variance control chart, could be statistically controlled after eight improvements. Then, Hotelling’s T2 control chart was successfully controlled after one test. The capability index value obtained was > 1, indicating that the quality control process in liquid waste at the Pesantren Baru sugar factory is capable or controlled.

Keywords

statistics

Article Details

How to Cite
Hamidah, I., Hamid, A., & Khaulasari, H. (2025). Analysis of Industrial Waste Quality Control Using Generalized Variance and Hotelling’s T2 Control Diagram Methods . Enthusiastic : International Journal of Applied Statistics and Data Science, 5(1), 78–87. https://doi.org/10.20885/enthusiastic.vol5.iss1.art8

References

  1. N.A.P. Harahap, F. Al Qadri, D.I.Y. Harahap, M. Situmorang, and S. Wulandari, “Analisis perkembangan industri manufaktur Indonesia,” El-Mal J. Kaji. Ekon. Bisnis Islam, vol. 4, no. 5, pp. 1444–1450, Apr. 2023, doi: 10.47467/elmal.v4i5.2918.
  2. N.K. Busri, Arminas, and A. Hidayat, “Pengendalian kualitas limbah cair industri gula dengan integrasi metode PDCA dan seven tools,” in Pros. Semin. Nas. Teknol. Ind. X (SNTI) 2023, 2023, pp. 91–97.
  3. R. Sjafruddin and A. Azis, “Pemanfaatan limbah cair industri gula rafinasi sebagai bahan baku pembuatan energi terbarukan (BIOGAS),” in Pros. Semin. Nas. Has. Penelit., vol. 2017, 2017, pp. 55–60.
  4. E.I. Rhofita and A.E. Russo, “Efektifitas kinerja instalasi pengolahan air limbah (IPAL) industri gula di Kabupaten Kediri dan Kabupaten Sidoarjo,” J. Teknol. Lingkung., vol. 20, no. 2, pp. 235–242, Jul. 2019, doi: 10.29122/jtl.v20i2.3469.
  5. E.B. Wardiana and W.A. Husaini, “Analisis penerapan akutansi biaya lingkungan terhadap pengelolaan limbah (studi pada limbah PG Pesantren Baru Kediri tahun 2016),” J. Adm. Bisnis, vol. 50, no. 3, pp. 138–144, Sep. 2017.
  6. A. Dwi, “Sumber Air Warga Tercemar Limbah, Ini Kata PG Pesantren Kediri,” detiknews. Accessed: June 21, 2024. [Online]. Available: https://news.detik.com/berita-jawa-timur/d-3842668/sumber-air-warga-tercemar-limbah-ini-kata-pg-pesantren-kediri
  7. S.S.D. Pratiwi, “Analisis dampak sumber air sungai akibat pencemaran pabrik gula dan pabrik pembuatan sosis,” J. Res. Educ. Chem., vol. 3, no. 2, pp. 122–142, Oct. 2021, doi: 10.25299/jrec.2021.vol3(2).7774.
  8. E. Rusdiana, M.F.F. Mu’tamar, and K. Hidayat, “Analisis faktor-faktor penjernihan limbah cair unit pengolahan limbah cair industri gula (studi kasus PG Xyz),” Agroind. Technol. J., vol. 4, no. 1, pp. 1–15, May 2020, doi: 10.21111/atj.v4i1.4093.
  9. T. Grahanita and A.I. Achmad, “Pengendalian kualitas limbah cair menggunakan diagram kendali multivariate exponentially weighted moving average (MEWMA),” Bandung Conf. Ser. Stat., vol. 3, no. 2, pp. 717–726, 2023, doi: 10.29313/bcss.v3i2.9261.
  10. E. Ramadhani, H. Mawengkang, and M.R. Sutarman, “Controlling industrial processes using multivariate exponential weighted moving average (MEWMA),” Int. J. Recent Technol. Eng., vol. 7, no. 6S5, pp. 1448–1453, Apr. 2019.
  11. S. Idris, L. Wachidah, T. Sofiyayanti, and E. Harahap, “The control chart of data depth based on influence function of variance vector,” in 2nd Int. Conf. Appl. Ind. Math. Stat., in Journal of Physics: Conference Series, vol. 1366, 2019, pp. 1–10, doi: 10.1088/1742-6596/1366/1/012125.
  12. Irma, D. Anggraini, and F.M. Farid, “Peta kendali multivariat np,” J. Stat. Its Appl., vol. 1, no. 1, pp. 1–13, Dec. 2022, doi: 10.20527/ragam.v1i1.7387.
  13. A.M. Susanto and H. Haryono, “Analisis pengendalian kualitas statistika pada proses produksi pipa electric resistance welded (ERW) di PT. X,” J. Sains dan Seni ITS, vol. 5, no. 2, 2016, pp. E83–E90, doi: 10.12962/j23373520.v5i2.20004.
  14. A.S. Mufidah, “Pengendalian kualitas statistik produk pupuk phonska di PT Petrokimia Gresik Tbk,” Diploma thesis, Inst. Teknol. Sepuluh Nopember, Surabaya, Indonesia, 2019.
  15. A. Ramdhania and N.A.K. Rifai, “Diagram kendali multivariat T2 Hotelling pada instalasi pengolahan air limbah,” Bandung Conf. Ser. Stat., vol. 2, no. 2, pp. 189–196, 2022, doi: 10.29313/bcss.v2i2.3765.
  16. F.D. Arista, S.D. Ramadini, and M. Ahsan, “Pengendalian kualitas statistik pada tepung terigu menggunakan peta kendali multivariat,” Inferensi, vol. 4, no. 2, pp. 109–119, Sep. 2021, doi: 10.12962/j27213862.v4i2.10830.
  17. D. Boullosa, J.L. Larrabe, A. Lopez, and M.A. Gomez, “Monitoring through T2 Hotelling of cylinder lubrication process of marine diesel engine,” Appl. Therm. Eng., vol. 110, pp. 32–38, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.08.062.
  18. S.B. Sari, E.T. Herdiani, and N. Sirajang, “Monitoring variabilitas proses berdasarkan statistik wilks,” J. Mat. Stat. dan Komput., vol. 16, no. 1, pp. 1–9, Jun. 2019, doi: 10.20956/jmsk.v16i1.6485.
  19. D.C. Montgomery, Statistical Quality Control Seven Edition, 7th ed. Hoboken, NJ, USA: Wiley, 2012.
  20. D. Hendrawan, S.M. Wirawati, and H. Wijaya, “Analisis pengendalian kualitas pada proses boning sapi wagyu menggunakan statistical quality control (SQC) di PT. Santosa Agrindo,” J. Ind. Eng. Manag. Res. (Jiemar), vol. 1, no. 2, pp. 196–206, Aug. 2020, doi: 10.7777/jiemar.v1i2.60.
  21. W.H. Sutiyono, A. Fitria, H. Adiatma, and W. Setiafindari, “Pengendalian kualitas dengan menggunakan metode seven tools untuk meningkatkan produktivitas di PT Jogjatex,” J. Sains Teknol., vol. 2, no. 2, pp. 45–57, Nov. 2023, doi: 10.58169/saintek.v2i2.222.
  22. Y. Wilda, H. Meiliati, M.A. Rafsanjani, and F. Rahadi, “Analisis pengendalian mutu crude palm kernel oil (CPKO) dengan menggunakan metode statical statistical quality control (SQC),” J. Teknol. Manaj. Ind. Terap., vol. 2, no. 2, pp. 119–127, May 2023, doi: 10.55826/tmit.v2i2.71.
  23. D.P. Andriani, M. Sani, and A. Qurrota, “Analisis Pengendalian kualitas mesh size distribution pada kristal monosodium glutamat (MSG) dengan statistical quality control,” in Pros. Seniati, 2019, pp. 198–204, doi: 10.36040/seniati.v5i4.1174.

Similar Articles

You may also start an advanced similarity search for this article.