Main Article Content

Abstract

Pinctada maxima shells from West Nusa Tenggara has natural minerals called calcite that can be decomposed into CaO compounds as a green catalyst that heterogeneous, base and environmentally friendly. CaO compounds in the nanometer scale is one option as an alternative substitute or replacement of the use of homogeneous catalysts. The purpose of this study was to test the catalytic activity of CaO compound from the pearl shells (P. maxima) based on particle size. The catalytic activity test has been measured against the percentage of yield of methyl ester produced by alcoholysis reaction. Characterization of nano-CaO compounds has been done using X-ray powder diffraction (XRD), Brunauer Emmett Teller (BET), scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDX), transmittance electron microscopy (TEM), while methyl esters has been analyzed using the ASTM method. CaO catalyst on the nanometer-scale have more effective catalytic activity than micrometer scale with the yield percentage of methyl ester obtained are 81,61% and 30,71%, respectively. The results of methyl ester characterization by ASTM method has shown that methyl ester has specification that are close to diesel oil, so it can be used as an alternative or substitution on diesel engine.

Keywords

Katalis hijau Pinctada maxima nano-CaO Reaksi Alkoholisis

Article Details

How to Cite
Wahyuningsih, K., Jumeri, J., & Wagiman, W. (2018). Green Catalysts Activities of CaO Nanoparticles from Pinctada maxima Shell on Alcoholysis Reaction. EKSAKTA: Journal of Sciences and Data Analysis, 18(2), 121–136. https://doi.org/10.20885/eksakta.vol18.iss2.art4

References

  1. Abdullah, S.H.Y.S., Hanapi, N.H.M., Azid, A., Umar, R., Juahir, H., Khatoon, H., and Endut, A., 2017, A Review of Biomass-Derived Heterogeneous Catalyst for a Sustainable Biodiesel Production, Renewable and Sustainable Energy Reviews, 70, 1040–51.
  2. Anonim, 2017, Nanoteknologi - Partikel Nano Dalam Bentuk Serbuk - Karakteristik Dan Pengukuran SNI ISO/TS 17200:2015, Jakarta, Badan Standardisasi Nasional.
  3. Anonim, 2016, Indonesia Energy Outlook 2016: Energy Development in Supporting Green Industry 1st ed, Jakarta, Badan Pengkajian dan Penerapan Teknologi.
  4. Anonim, 2017, Nanoteknologi-Kosakata-Bagian 4: Material berstruktur nano SNI ISO/TS 80004-4:2013, Jakarta, Badan Standardisasi Nasional.
  5. Anonim, 2006, Direktur Jenderal Minyak dan Gas Bumi: Spesifikasi Bahan Bakar Minyak Jenis Minyak Solar No. 3675 K/24/DJM/2006, Jakarta, Kementrian Energi dan Sumber Daya Mineral.
  6. Arva, S.P., Helwani, Z. and Saputra, E., 2016, Sintesis fly ash yang dipregnasi dengan Na2O sebagai katalis pada proses transesterifikasi minyak sawit off-grade menjadi biodiesel, Jurnal FTEKNIK, 3(1), 1-8.
  7. Bankovic–Ilic, Ivana B., Marija R. Miladinovic, Olivera S. Stamenkovic, and Vlada B. Veljkovic, 2017, Application of Nano CaO–Based Catalysts in Biodiesel Synthesis, Renewable and Sustainable Energy Reviews, 72, 746–60.
  8. Baskar, G., Gurugulladevi, A. Nishanthini, T., Aiswarya, R., and Tamilarasan, K., 2017, Optimization and Kinetics of Biodiesel Production from Mahua Oil Using Manganese Doped Zinc Oxide Nanocatalyst, Renewable Energy, 103, 641–646.
  9. Enayati, M. H., Aryanpour, G.R., and Ebnonnasir, A., 2009, Production of Nanostructured WC–Co Powder by Ball Milling, International Journal of Refractory Metals and Hard Materials, 27, 159–163.
  10. Fatimah, Is, 2017, Synthesis of Metal and Metal Oxide Nanoparticles Using Plant Extract?: A Review, Eksakta: Jurnal Imu-Ilmu MIPA, 17(1), 66–85.
  11. Fatmawati, Hikmah, Puspitasari, W., Pujiarti, R., Ardianti, S., and Fatimah, I., 2018, Pengaruh Berat CaO Dari Cangkang Keong Sawah (Pilla ampullacea) Pada Aktivitasnya Sebagai Katalis Heterogen Pada Konversi Biodiesel Dari Minyak Bekatul, Eksakta: Jurnal Imu-Ilmu MIPA, 18(1), 64–73.
  12. Gardy, J., Hassanpour, A., Lai, X., Ahmed, M.H., and Rehan, M., 2017, Applied Catalysis B?: Environmental Biodiesel Production from Used Cooking Oil Using a Novel Surface Functionalised TiO2 Nano-Catalyst, Applied Catalysis B, Environmental, 207, 297–310.
  13. Glavi, Peter and Lukman, R., 2007, Review of Sustainability Terms and Their Definitions, Journal of Cleaner Production, 15, 1875–1885.
  14. Hussain, S.T., Ali, S.A., Bano, A., and Mahmood, T., 2011, Use of Nanotechnology for the Production of Biofuels from Butchery Waste, 6(31), 7271–7279.
  15. Jegatheesan, V., Liow, J.L., Shu, L., Kim, S.H., and Visvanathan, C., 2009, The Need for Global Coordination in Sustainable Development, Journal of Cleaner Production, 17(7), 637–643.
  16. Lesbani, A., Tamba, P., Mohadi, R., and Fahmariyanti, 2013, Preparation of Calcium Oxide From Achatina fulica as Catalyst For Production of Biodiesel From Waste Cooking Oil, Indonesian Journal of Chemistry, 13(2), 176–180.
  17. Macario, Anastasia and Giordano, G., 2013, Catalytic Conversion of Renewable Sources for Biodiesel Production?: A Comparison Between Biocatalysts and Inorganic Catalysts, Catal Lett, 143, 159–168.
  18. Mahmood, T., and Hussain, S.T., 2010, Nanobiotechnology for the Production of Biofuels from Spent Tea, African Journal of Biotechnology, 9(6), 858–868.
  19. Mosaddegh, Elaheh, Hassankhani, A., Pourahmadi, S., and Ghazanfari, D., 2013, Ball Mill–Assisted Preparation of Nano-CaCO3 as a Novel and Green Catalyst–Based Eggshell Waste?: A Green Approach in the Synthesis of Pyrano[4,3-B]Pyrans, International Journal of Green Nanotechnology, 1, 1–5.
  20. Nurhayati, Anita, S., Amri, T.A., and Linggawati, A., 2017, Esterification of Crude Palm Oil Using H2SO4 and Transesterification Using CaO Catalyst Derived from Anadara granosa, Indonesian Journal of Chemistry, 17(2), 309–315.
  21. Pandit, P.R., and Fulekar, M.H., 2017, Egg Shell Waste as Heterogeneous Nanocatalyst for Biodiesel Production?: Optimized by Response Surface Methodology, Journal of Environmental Management, 198, 319–329.
  22. Panjaitan, F.R., Yamanaka, S., and Kuga, Y., 2017, Soybean Oil Methanolysis over Scallop Shell-Derived CaO Prepared via Methanol-Assisted Dry Nano-Grinding, Advanced Powder Technology, 28, 1627–1635.
  23. Roschat, W., Siritanon, T., Yoosuk, B., and Promarak, V., 2016, Rice Husk-Derived Sodium Silicate as a Highly Efficient and Low-Cost Basic Heterogeneous Catalyst for Biodiesel Production, Energy Conversion and Management, 119, 453–462.
  24. Sani, Y.M., Wan M.A.W. Daud, and Aziz, A.R.A., 2013, Solid Acid-Catalyzed Biodiesel Production from Microalgal Oil—The Dual Advantage, Journal of Environmental Chemical Engineering, 1, 113–121.
  25. Taufiq-Yap, Y.H., Lee, H.V., and Lau, P.L., 2012, Transesterification of Jatropha curcas Oil to Biodiesel by Using Short Necked Clam (Orbicularia orbiculata) Shell, Energy Exploration & Exploitation, 30(5), 853–866.
  26. Tehubijuluw, H., Sutapa, I.W., and Lethulur, M., 2014, Waste Cooking Oil Conversion to Biodeisel Catalized By Egg Shell Of Purebred Chiken With Ethanol as A Solvent, Eksakta: Jurnal Imu-Ilmu MIPA, 14(1), 52–64.
  27. Widiarti, N., 2012, Pengaruh penambahan oksida (CuO) terhadap karakteristik CuO/TS-1 sebagai katalis alternatif pada reaksi oksidasi benzena menjadi fenol, Sainteknol, 10 (2), 133-140.
  28. Yutthalekha, T., Wattanakit, C., and Warakulwit, C., 2017, Hierarchical FAU-Type Zeolite Nanosheets as Green and Sustainable Catalysts for Benzylation of Toluene, Journal of Cleaner Production, 142, 1244–1251.
  29. Zabeti, M., Mohd, W., Wan, A., and Aroua, M.K., 2009, Activity of Solid Catalysts for Biodiesel Production?: A Review, Fuel Processing Technology, 90(6), 770–777.
  30. Zein, Y.M., Anal, A.K., Prasetyoko, D., and Qoniah, I., 2016, Biodiesel Production from Waste Palm Oil Catalyzed by Hierarchical ZSM-5 Supported Calcium Oxide, Indonesian Journal of Chemistry, 16(1), 98–104.