Main Article Content

Abstract

The rapid development of information technologies accelerates the approximations of industry 4.0, which is why sectors of the economy and science must adapt to these changes. Global changes in geography have led to the emergence of a new scientific discipline called geoinformatics. It then provides insight into the Smart Geographic Area, its structure and the main components. To do this, there used methods for communicating the main components IIoT, IoE), for analyzing data (Big Data, Hadoop), for managing processes (CPs), for storing data (Cloud Computing, Fog Computing). As a result of the study, there was developed a Smart Geographic Area algorithm based on the MapReduce paradigm.

Keywords

Industry 4.0 Geography Geoinformatics Smart Geographic Area Geographic Information System Hadoop

Article Details

How to Cite
S.I, Y., N.A, R., V.H, A., & M.E, K. (2021). DEVELOPMENT OF ALGORITHM OF SMART GEOGRAPHIC AREA. EKSAKTA: Journal of Sciences and Data Analysis, 2(1), 76–81. https://doi.org/10.20885/EKSAKTA.vol2.iss1.art7

References

  1. Dorleon, G., Gervais, S., Industry 4.0-What we need to know. https://www.researchgate.net/publication/329388831_Industry_40-What_we_need_to_know, (2017).
  2. Schabus S., Scholz J., Geographic Information Science and Technology as Key Approach to unveil the Potential of Industry 4.0 – How Location and Time Can Support Smart Manufacturing. ICINCO-2015 463-470, (2015).
  3. Kiss E., Nedelka E., Geographical approach of Industry 4.0 based on information and communication technologies at Hungarian enterprises in connection with industrial space., Hungarian Geographical Bulletin 69(2) (2020) 99-117.
  4. Subramanian, B., Nathani, K, Rathnasamy, S., IoT Technology, Applications and Challenges: A Contemporary Survey, Wireless Personal Communications 108 (2019) 363-388. Doi: 10.1007/s11277-019-06407-w.
  5. Moorthy, J., Lahiri, R., Biswas, N., Sanyal, D., Ranjan, J., Nanath, K., Ghosh, P., Big Data: Prospects and Challenges, Vikalpa 40(1) (2015) 74-96. Doi: 10.1177/0256090915575450.
  6. Jamaludin, J., Rohani, J. M., Cyber-Physical System (CPS): State of the Art. 2018 International conference on Computing, Electronic and Electrical Engineering (ICE Cube). https://www.researchgate.net/publication/330389785_Cyber-Physical_System_CPS_State_of_the_Art, (2018).
  7. Birje, M., Challagidad, P., Goudar, R. H., Tapale, M. T., Cloud computing review: Concepts, technology, challenges and security, International Journal of Cloud Computing 6(1) (2017). Doi: 10.1504/IJCC.2017.083905.
  8. Sinha, A. K., Malik, Z., Rezgui, A., Zimmerman, H., Geoinformatics: Transforming Data to Knowledge for Geosciences, GSA Today 20(12) (2010) 4-10. Doi: 10.1130/GSATG85A.1.
  9. What is Remote Sensing? https://earthdata.nasa.gov/learn/remote-sensing.
  10. Miraz, M. H., Ali, M., Excell, P., Picking, R. (2015). A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT), Internet Technologies and Applications (ITA) (2015).
  11. Al-Doghman, F., Chaczko, Z., Rakhi, A., Klempous, R., A review on Fog Computing technology, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). DOI: 10.1109/SMC.2016.7844455.
  12. Shrestha, H. L., GIS and Remote Sensing Applications for Resource Mapping. The Initiation 1 (2010) 56-61. DOI: 10.3126/init.v1i0.2681.
  13. Jing Z., Jia Z., Xiangyang Du, Kang Hou, Minjuan Qiao, an overview of ecological monitoring based on geographic information system (GIS) and remote sensing (RS) technology in China, IOP Conference Series Earth and Environmental Science 94(1) (2017). DOI: 10.1088/1755-1315/94/1/012056.
  14. Dzeboev, B., Krasnoperov, R., On the monitoring of seismic activity using the algorithms of discrete mathematical analysis. Russian Journal of Earth Sciences 18(3) (2018) 1-9. DOI: 10.2205/2018ES000623.
  15. Ukhurebor, K. E., Abiodun, I. C., Azi, S. O., Otete, I., Obogai, L. E., A Cost-Effective Weather Monitoring Device, Archives of Current Research International 7(4) (2017) 1-9. DOI: 10.9734/ACRI/2017/32885.
  16. Hund, S., Johnson, M., Keddie, T., Developing a Hydrologic Monitoring Network in Data-Scarce Regions Using Open-Source Arduino Dataloggers, Agricultural & Environmental Letters 1(1) (2016). DOI: 10.2134/ael2016.02.0011.
  17. Chen Guo-ping, Zhao Jun-san, Yuan Lei, Ke Zun-jie, Gu Miao, Wang Tao., Implementation of a Geological Disaster Monitoring and Early Warning System Based on Multi-source Spatial Data: A Case Study of Deqin County, Yunnan Province. https://nhess.copernicus.org/preprints/nhess-2017-191/nhess-2017-191.pdf
  18. What are the disadvantages of MapReduce?, https://stackoverflow.com/questions/18585839/what-are-the-disadvantages-of-mapreduce

Most read articles by the same author(s)