Main Article Content

Abstract

Abstract: Shallot is one of the highest-yielding horticultural crops in Indonesia and has the tendency to increase the profits of farmers in Indonesia. But until now in Indonesia there is no insurance for horticultural crops other than corn, whereas the shallot farmers face various sources of risk such as weather changes, pest attacks, or other technical factors that ultimately lead to uncertainty of agricultural yields (revenue risk). To overcome this loss, insurance companies can make products based on shallot yields and shallot market prices. Therefore it is essential to grasp the distribution of risk variables (shallot yields and shallot market prices) that interact simultaneously, not separate from one another. Omitting dependencies among risk variables can cause biased risk estimation. Copula can model the non-linear dependencies and can identify the structure of the dependencies between variables. The suitable copula for modeling yield and price risk of shallot is simulated to compute the premium. Result show that clayton copula is suitable for dependence modelling between risk variables.

Keywords

Clayton Copula horticulture crops insurance non-linear dependencies

Article Details

How to Cite
Rusyda, H. A., Soleh, A. Z., Noviyanti, L., Chadidjah, A., & Indrayatna, F. (2020). Utilization Copula in Determination of Shallot Insurance Premium Based on Regional Harvest Results. EKSAKTA: Journal of Sciences and Data Analysis, 20(2), 160–166. https://doi.org/10.20885/EKSAKTA.vol1.iss2.art11

References

  1. Choirul Anam, Petani Minta Tanaman Hortikultura juga Diasuransikan Retrieved from http:///ekonomi.bisnis.com/read/20150805/459627/petani-minta-tanaman-hortikultura-juga-diasuransikan, (2015)
  2. Cherubini, U., Luciano, E., & vecchiato, W., Copula methods in finance. John Wiley & Sons., 2004
  3. Guloksuz, C. T., Comparison of some selection criteria for selecting bivariate archimedean copulas, Afyon Kocatepe Universitesi Feb Ve Muhendislik Bilimleri Dergisi, 16(2), (2016), 250-255.
  4. Hofert, M. Machler, M., and McNeil, A. J., Likelihood inference for Archimedean copulas in high dimensions under known margins. Journal of Multivariate Analysis 110 (2012), 133-150.
  5. Jane, R. Dalla Valle, L. Simmonds, D., & raby, A., A copula-based approach for the estimation of wave height records through spatial correlation. Coastal Engineering, 117, 92016),1-18.
  6. Kortekaas, M.P., A Vine Copula-GARCH Option Pricing models. Master's Thesis in Financial Econometrics, Faculty of Economics and Business, University of Amsterdam, 2013.
  7. Mahfoud, M., & Michael, M. Bivariate Archimedean copulas: an application to two stock market incices, BMI Paper, 1517333, 2012.
  8. Nur Aini, Kementerian ingin asuransi pertanian bias untuk hortikultura. retrieved from http://www.republika.co.id/berita/ekonomi/keuangan/18/02/227/p4t4sb382-kementan-ingin-asuransi-pertanian-bisa-untuk-hortikultura, 2018.
  9. Nelsen RB., An Introduction to Copulas. Portland (US): Springer, 2015
  10. Shumway, Robert H., and Stoffer, David S., Time Series Analysis and Its Application. new York: Springer, 2011.
  11. Sklar, A., Fonctions de r'epatition an dimensions et leurs marrges. Publication de I'Institut de Statique de l'Universit'e de paris 8 (1959), 229-231
  12. Trivedi, P., K., & Zimmer, D. M., Copula modeling: an introduction for pratitioners. Foundations and trends in Econometrics, 1(1) (2007), 1-111.
  13. Zhu, Y., Hosh, S. K., 7 Goodwin, B., Modeling dependence in the design of whole farm a copula based model approach (No.328-2016-22619), 2008.