Main Article Content
Abstract
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- K. M. Bataineh, M. Naji, and M. Saqer, A comparison study between various fuzzy clustering algorithms, Jordan J. Mech. Ind. Eng., 5 (4) (2011) 335–343.
- A. C. Rencher and W. F. Christensen, Methods of Multivariate Analysis. Wiley, 2012.
- R. Sharma and K. Verma, Fuzzy shared nearest neighbor clustering, Int. J. Fuzzy Syst., 21 (8) (2019) 2667–2678.
- J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review], IEEE Trans. Automat. Contr., 42 (10) (1997) 1482–1484.
- K. Benmouiza and A. Cheknane, Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting, Theor. Appl. Climatol., 137 (1–2) (2019) 31–43.
- S. Zeng, S. M. Chen, and M. O. Teng, Fuzzy forecasting based on linear combinations of independent variables, subtractive clustering algorithm and artificial bee colony algorithm, Inf. Sci. (Ny)., 484 (2019) 350–366.
- M. Ghane’i Ostad, H. Vahdat Nejad, and M. Abdolrazzagh Nezhad, Detecting overlapping communities in LBSNs by fuzzy subtractive clustering, Soc. Netw. Anal. Min., 8 (1) (2018) 1–11.
- R. S. Kamath and R. K. Kamat, Earthquake magnitude prediction for andaman-nicobar Islands: adaptive neuro fuzzy modeling with fuzzy subtractive clustering approach, J. Chem. Pharm. Sci., 10 (3) (2017) 1228–1233.
- T. Sonamani Singh, P. Verma, and R. D. S. Yadava, Fuzzy subtractive clustering for polymer data mining for saw sensor array based electronic nose, Adv. Intell. Syst. Comput., 546 (2017) 245–253.
- H. Salah, M. Nemissi, H. Seridi, and H. Akdag, Subtractive Clustering and Particle Swarm Optimization Based Fuzzy Classifier, Int. J. Fuzzy Syst. Appl., 8 (3) (2019) 108–122.
- X. Zhao and G. Yang, An entropy-based online multi-model identification algorithm and generalized predictive control, J. Intell. Fuzzy Syst., 32 (3) (2017) 2339–2349.
- S. K. Chandar, Stock market prediction using subtractive clustering for a neuro fuzzy hybrid approach, Cluster Comput., 22 (s6) (2019) 13159–13166.
- I. Sangadji, Y. Arvio, and Indrianto, Dynamic segmentation of behavior patterns based on quantity value movement using fuzzy subtractive clustering method, J. Phys. Conf. Ser., 974 (1) (2018) 0–7.
- O. Rodrigues, Combining minkowski and cheyshev: new distance proposal and survey of distance metrics using k-nearest neighbours classifier, Pattern Recognit. Lett., 110 (2018) 66–71.
- S. Surono and R. D. A. Putri, Optimization of fuzzy c-means clustering algorithm with combination of minkowski and chebyshev distance using principal component analysis, Int. J. Fuzzy Syst., (2020) .
- J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press, 1981.
- S. Kusumadewi and H. Purnomo, Aplikasi logika fuzzy untuk pendukung keputusan. Yogyakarta: Graha Ilmu, 2010.
- K. Rezaei and H. Rezaei, New distance and similarity measures for hesitant fuzzy soft sets, 16 (6) (2019) 159–176.
- P. Noviyanti, Fuzzy c-Means Combination of Minkowski and Chebyshev Based for Categorical Data Clustering. Yogyakarta: Universitas Ahmad Dahlan, 2018.
- N. Azizah, D. Yuniarti, and R. Goejantoro, Penerapan Metode Fuzzy Subtractive Clustering (Studi Kasus: Pengelompokkan Kecamatan di Provinsi Kalimantan Timur Berdasarkan Luas Daerah dan Jumlah Penduduk Tahun 2015), J. EKSPONENSIAL, 9 (2) (2018) 197–206.
- V. Utomo and D. Marutho, Measuring hybrid sc-fcm clustering with cluster validity index, 2018 Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2018, (C) (2018) 322–326
References
K. M. Bataineh, M. Naji, and M. Saqer, A comparison study between various fuzzy clustering algorithms, Jordan J. Mech. Ind. Eng., 5 (4) (2011) 335–343.
A. C. Rencher and W. F. Christensen, Methods of Multivariate Analysis. Wiley, 2012.
R. Sharma and K. Verma, Fuzzy shared nearest neighbor clustering, Int. J. Fuzzy Syst., 21 (8) (2019) 2667–2678.
J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review], IEEE Trans. Automat. Contr., 42 (10) (1997) 1482–1484.
K. Benmouiza and A. Cheknane, Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting, Theor. Appl. Climatol., 137 (1–2) (2019) 31–43.
S. Zeng, S. M. Chen, and M. O. Teng, Fuzzy forecasting based on linear combinations of independent variables, subtractive clustering algorithm and artificial bee colony algorithm, Inf. Sci. (Ny)., 484 (2019) 350–366.
M. Ghane’i Ostad, H. Vahdat Nejad, and M. Abdolrazzagh Nezhad, Detecting overlapping communities in LBSNs by fuzzy subtractive clustering, Soc. Netw. Anal. Min., 8 (1) (2018) 1–11.
R. S. Kamath and R. K. Kamat, Earthquake magnitude prediction for andaman-nicobar Islands: adaptive neuro fuzzy modeling with fuzzy subtractive clustering approach, J. Chem. Pharm. Sci., 10 (3) (2017) 1228–1233.
T. Sonamani Singh, P. Verma, and R. D. S. Yadava, Fuzzy subtractive clustering for polymer data mining for saw sensor array based electronic nose, Adv. Intell. Syst. Comput., 546 (2017) 245–253.
H. Salah, M. Nemissi, H. Seridi, and H. Akdag, Subtractive Clustering and Particle Swarm Optimization Based Fuzzy Classifier, Int. J. Fuzzy Syst. Appl., 8 (3) (2019) 108–122.
X. Zhao and G. Yang, An entropy-based online multi-model identification algorithm and generalized predictive control, J. Intell. Fuzzy Syst., 32 (3) (2017) 2339–2349.
S. K. Chandar, Stock market prediction using subtractive clustering for a neuro fuzzy hybrid approach, Cluster Comput., 22 (s6) (2019) 13159–13166.
I. Sangadji, Y. Arvio, and Indrianto, Dynamic segmentation of behavior patterns based on quantity value movement using fuzzy subtractive clustering method, J. Phys. Conf. Ser., 974 (1) (2018) 0–7.
O. Rodrigues, Combining minkowski and cheyshev: new distance proposal and survey of distance metrics using k-nearest neighbours classifier, Pattern Recognit. Lett., 110 (2018) 66–71.
S. Surono and R. D. A. Putri, Optimization of fuzzy c-means clustering algorithm with combination of minkowski and chebyshev distance using principal component analysis, Int. J. Fuzzy Syst., (2020) .
J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press, 1981.
S. Kusumadewi and H. Purnomo, Aplikasi logika fuzzy untuk pendukung keputusan. Yogyakarta: Graha Ilmu, 2010.
K. Rezaei and H. Rezaei, New distance and similarity measures for hesitant fuzzy soft sets, 16 (6) (2019) 159–176.
P. Noviyanti, Fuzzy c-Means Combination of Minkowski and Chebyshev Based for Categorical Data Clustering. Yogyakarta: Universitas Ahmad Dahlan, 2018.
N. Azizah, D. Yuniarti, and R. Goejantoro, Penerapan Metode Fuzzy Subtractive Clustering (Studi Kasus: Pengelompokkan Kecamatan di Provinsi Kalimantan Timur Berdasarkan Luas Daerah dan Jumlah Penduduk Tahun 2015), J. EKSPONENSIAL, 9 (2) (2018) 197–206.
V. Utomo and D. Marutho, Measuring hybrid sc-fcm clustering with cluster validity index, 2018 Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2018, (C) (2018) 322–326