Main Article Content

Abstract

Stroke is the third cause of death and the first cause of disability in the world. It is around 80% of stroke patients in the world are ischemic stroke. According to the development of stroke models in animals, BCCAO is one technique that can induce global cerebral ischemia. An ischemia is known to influence activities of inflammatory cells which can be measured through peripheral blood. This study aims to determine effects of ischemia duration on routine blood profiles of rats (Rattus norvegicus) after bilateral common carotid artery occlusion (BCCAO). This study was a quasi-experimental study. Its subjects were adult Wistar rats (Rattus norvegicus). The rats were grouped into four treatment groups, and each group consisted of 6 rats. Group A was a group of sham-operated rats, group B was a group of rats with ischemia duration for 5 minutes, group C was a group of rats with ischemia duration for 10 minutes, and group D was a group of rats with ischemia duration for 20 minutes. Its obtained data were analysed by one-way ANOVA test and Post Hoc Tamhane's test. The ischemia duration significantly influenced the neutrophil and lymphocyte count after ischemia, with p < 0.05. The ischemia duration could affect the routine blood profiles of the rats after BCCAO, especially the neutrophil and lymphocyte count.

Article Details

How to Cite
Yulita Rahmawati, R. ., Mulyaningrum, U., & Sari Handayani, E. (2022). Routine Blood Profiles of Global Ischemic Rats Based on Ischemia Durations. EKSAKTA: Journal of Sciences and Data Analysis, 3(1), 50–58. https://doi.org/10.20885/EKSAKTA.vol3.iss1.art6

References

  1. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species : A double edged sword in ischemia / reperfusion vs preconditioning. Redox Biol., 2 (2014) 702–14.
  2. Handayani ES, Nurmasitoh T, Akhmad AS, Fauziah AN, Rizani R, Rahmawaty YR, et al. Effect of BCCAO Duration and Animal Models Sex on Brain Ischemic Volume After 24 Hours Reperfusion. Bangladesh J Med Sci., 17(1) (2018) 29–37.
  3. Handayani ES, Susilowati R, Setyopranoto I, Partadiredja G. Transient Bilateral Common Carotid Artery Occlusion (tBCCAO) of Rats as a Model of Global Cerebral Ischemia. Bangladesh J Med Sci.,18(3) (2019) 491–500.
  4. Bonita R, Beaglehole R. Stroke prevention in poor countries: Time for action. Stroke. 38 (11) (2007) 2871–2.
  5. Handayani ES, Nur A, Kuswati K, Nugraha ZS, Ikhsani NW, Sakti FR, et al. Ethanol Extract of Black Sugarcane Decrease Ischemia Volume and Bax Expression In Rats’ Brain. Int J Hum Heal Sci., 4(2) (2020) 102–8.
  6. Kaur K, Kaur A, Kaur A. Erythrocyte Sedimentation Rate : Its Determinants and Relationship with Risk Factors Involved in Ischemic Stroke. Korean J Clin Lab Sci. 54(1) (2022) 1–8.
  7. Sienel RI, Kataoka H, Kim SW, Seker FB, Plesnila N. Adhesion of Leukocytes to Cerebral Venules Precedes Neuronal Cell Death and Is Sufficient to Trigger Tissue Damage After Cerebral Ischemia. Front Neurol., 12 (2022) 1–16.
  8. Konsue A, Picheansoonthon C, Talubmook C. Fasting blood glucose levels and hematological values in normal and streptozotocin-induced diabetic rats of mimosa pudica L. extracts. Pharmacogn J., 9(3) (2017) 315–22.
  9. Kim JY, Park J, Chang JY, Kim S-H, Lee JE. Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Exp Neurobiol.,25(5) (2016) 241.
  10. Li P, Gan Y, Mao L, Leak R, Chen J, Hu X. The Critical Roles of Immune Cells in Acute Brain Injuries. In: Immunological Mechanisms and Therapies in Brain Injuries and Stroke. Peiying Li Shanghai Jiao Tong University; 2014. p. 9–25.
  11. Otxoa-De-Amezaga A, Gallizioli M, Pedragosa J, Justicia C, Miró-Mur F, Salas-Perdomo A, et al. Location of Neutrophils in Different Compartments of the Damaged Mouse Brain after Severe Ischemia/Reperfusion. Stroke., 50(6) (2019) 1548–57.
  12. El Amki M, Glück C, Binder N, Middleham W, Wyss MT, Weiss T, et al. Neutrophils Obstructing Brain Capillaries Are a Major Cause of No-Reflow in Ischemic Stroke. Cell Rep.,33(2) (2020).
  13. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation., 16(1) (2019) 1–24.
  14. Dolgushin II, Zaripova ZZ, Karpova MI. The role of neutrophils in the pathogenesis of ischemic stroke. Bull Sib Med.,20(3) (2021) 52–60.
  15. Li P, Gan Y, Mao L, Leak R. The Critical Roles of Immune Cells in Acute Brain Injuries. In: Immunological Mechanisms and Therapies in Brain Injuries and Stroke. 2014. 9–25.
  16. Lin, Wang, Yu. Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. Biochem Pharmacol (Los Angel)., 5(4) (2016).
  17. Ramachandera T, Sugiyono S. Haematological Featurer of Rats As Ischemic Stroke Animal Model. Faculty of Vetiriny Medicine Gadjah Mada University; 2020.
  18. Suroto S. Pro-inflammatory Cytokine Level and Neutrophil Count in Acute Ischemic Stroke. Berkala Ilmu Kedokteran., 34(2) (2002) 77–82.
  19. Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, et al. Interleukins and Ischemic Stroke. Front Immunol., 13 (2022) 1–18.
  20. Simats A, Garcia-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: From stroke diagnosis and prognosis to therapy. Biochim Biophys Acta., 1862(3) (2016) 411–24.
  21. Pawluk H, Woźniak A, Grześk G, Kołodziejska R, Kozakiewicz M, Kopkowska E, et al. The role of selected pro-inflammatory cytokines in pathogenesis of ischemic stroke. Clin Interv Aging., 15 (2020) 469–84.
  22. Kawabori M, Yenari MA. Inflammatory Responses in Brain Ischemia. Curr Med Chem., 22(10) (2015) 1258–77.
  23. Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem., 22(10) (2015) 1258–77.
  24. Kraft P, Drechsler C, Schuhmann MK, Gunreben I, Kleinschnitz C. Characterization of peripheral immune cell subsets in patients with acute and chronic cerebrovascular disease: A case-control study. Int J Mol Sci., 16(10) (2015) 25433–49.
  25. Sharif S, Ghaffar S, Saqib M, Naz S. Analysis of hematological parameters in patients with ischemic stroke. Int J Endocrinol Metab., 8(1) (2020) 17–20.
  26. Zaremba J, Skrobański P, Losy J. Acute ischaemic stroke increases the erythrocyte sedimentation rate, which correlates with early brain damage. Folia Morphol (Warsz)., 63(4) (2004) 373–6.
  27. Chang YL, Hung SH, Ling W, Lin HC, Li HC, Chung SD. Association between ischemic stroke and iron-deficiency anemia: A population-based study. PLoS One., 8(12) (2013) 170872.
  28. Altersberger VL, Kellert L, Al Sultan AS, Martinez-Majander N, Hametner C, Eskandari A, et al. Effect of haemoglobin levels on outcome in intravenous thrombolysis-treated stroke patients. Eur Stroke J., 5(2) (2020) 138–47.
  29. Sato F, Nakamura Y, Kayaba K, Ishikawa S. Hemoglobin Concentration and the Incidence. J Epidemiol Orig., 32(3) (2021) 1–6.
  30. Kimberly WT, Wu O, Arsava EM, Garg P, Ji R, Vangel M, et al. Lower Hemoglobin Correlates with Larger Stroke Volumes in Acute Ischemic Stroke. Cerebrovasc Dis Extra., 1(1) (2011) 44–53.
  31. Panwar B, Judd SE, Warnock DG, McClellan WM, Booth JN, Muntner P, et al. Hemoglobin Concentration and Risk of Incident Stroke in Community-Living Adults. Stroke., 47(8) (2016) 2017–24.
  32. Gotoh S, Hata J, Ninomiya T, Ago T, Kitazono T, Kiyohara Y, et al. Hematocrit and the risk of cardiovascular disease in a Japanese community: The Hisayama Study. Atherosclerosis., 242(1) (2015) 199–204.
  33. Htun P, Fateh-Moghadam S, Tomandl B, Handschu R, Klinger K, Stellos K, et al. Course of platelet activation and platelet-leukocyte interaction in cerebrovascular ischemia. Stroke., 37(9) (2006) 2283–7.