Main Article Content

Abstract

Applying coal-biomass co-firing power generation is the strategy to accelerate the renewable energy share in the energy mix to reach 23% by 2025. Although biomass co-firing trials have been carried out at several Coal-Fired Power Plants (CFPP), the potential for implementing biomass co-firing on a larger scale and for the long-term propose still needs to be identified. This article evaluates emission characteristics and economic aspects of implementing biomass and coal in power plants. The traditional review method is used by identifying journal articles as data sources and further elaborating according to the context of the study. The primary emissions from co-firing biomass with coal contain CO, SO2, NOx, and particulate matter. The coal-biomass co-firing power generation has been widely adopted due to its various positive effects. However, it is still necessary to consider the cost of retrofitting, OM, biomass prices, and incentives in its application.

Keywords

Biomass, Co-firing, Emissions, Power plants.

Article Details

How to Cite
Triani, M., Tanbar, F. ., Cahyo, N., Sitanggang, R., Sumiarsa, D. ., & Lara Utama, G. . (2022). The The Potential Implementation of Biomass Co-firing with Coal in Power Plant on Emission and Economic Aspects: A Review. EKSAKTA: Journal of Sciences and Data Analysis, 3(2). https://doi.org/10.20885/EKSAKTA.vol3.iss2.art4

References

  1. E. Beagle and E. Belmont, Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States, (2019).
  2. F. Al-mansour and J. Zuwala, An evaluation of biomass co-firing in Europe, Biomass Bioenergy, 34(5) (2010) 620–629.
  3. B. N. Madanayake, S. Gan, C. Eastwick, and H. K. Ng, Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques, Fuel Process. Technol., 159 (2017) 287–305.
  4. D. Umar, G. Hudaya, and F. Sulistyohadi, Study on combustion characteristics of coal-biomass for co-firing system as feedstock of coal gasification process, Indones. Min. J., 20(2) (2017) 115–130.
  5. P. Basu, J. Butler, and M. A. Leon, Biomass co-firing options on the emission reduction and electricity generation costs in coal- fired power plants, Renew. Energy, 36(1) (2011) 282–288.
  6. S. De and M. Assadi, Impact of cofiring biomass with coal in power plants – A techno-economic assessment,” Biomass Bioenergy, 33(2) (2009) 283–293.
  7. M. S. Roni, S. Chowdhury, S. Mamun, M. Marufuzzaman, W. Lein, and S. Johnson, Biomass co-firing technology with policies, challenges, and opportunities: A global review, Renew. Sustain. Energy Rev., 78(5) (2017) 1089–1101.
  8. B. Morrison and J. S. Golden, Life cycle assessment of co-firing coal and wood pellets in the Southeastern United States, J. Clean. Prod., 150(5) (2017) 188-196.
  9. A. N. Sidiq, Pengaruh co-firing biomassa terhadap efisiensi boiler PLTU batubara, 11(1) (2022) 21–31.
  10. N.A.Nudria, W. A.W. A. K. Ghania, R. T. Bachmann, B.T. H. T. Baharudin, D. K. S. Nge, M. S. Md. Said, N. Aizat, Co-combustion of oil palm trunk biocoal/sub-bituminous coal fuel blends, Energy Convers. Manag. X, 10 (2021) 100072.
  11. A. Demirbas, Sustainable cofiring of biomass with coal, Energy Convers. Manag., 44 (2003) 1465–1479.
  12. M. Fadli, D. M. Kamal, and P. M. Adhi, Analisis SWOT Untuk direct co-firing batubara dengan pelet sampah pada boiler tipe CFBC, Politeknologi, 18(3) (2019) 271–280.
  13. W. Griffin, J. Michalek, H. Matthews, and M. Hassan, Availability of biomass residues for co-firing in Peninsular Malaysia: implications for cost and GHG emissions in the electricity sector, Energies, 7(2) (2014) 804–823.
  14. M. Amann, Z. Klimont, A. H. Truong, P. Rafaj, and G. Kiesewetter, Future air quality in Ha Noi and northern Vietnam, (2018).
  15. H. Truong, M. Ha-duong, H. Anh, and T. Economics, Economics of co-firing rice straw in coal power plants in Vietnam, 154 (2022) 1–12.
  16. R. Sarwono, S. Tursiloadi, and K. C. Sembiring, Carbonization of palm oil empty fruit bunch ( EFB ) in hydrothermal processes to produce niochar, 18(12) (2016) 116–123.
  17. M. F. Praevia and Widayat, Analisis pemanfaatan limbah tandan kosong kelapa sawit sebagai cofiring pada PLTU batubara, J. Energi Baru dan Terbarukan, 3(1) (2022) 28–37.
  18. S. Kaniapan, S. Hassan, H. Ya, K. Nesan, and M. Azeem, The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, Bioenergy, and Transportation Sector: A Review, Sustainability, 13(6) (2021).
  19. Setyawan, H. Y., Sunaryo, Waluyo, B., Merlya, Choirun, A., Nizori, A., Sahrial, Energy potential from areca palm through direct combustion and pyrolysis in Indonesia: a review, Indones. Food Sci. Technol. J., 4(1) (2020) 19–26.
  20. A. Darmawan, D. Budianto, M. Aziz, and K. Tokimatsu, Hydrothermally-treated empty fruit bunch cofiring in coal power plants: a techno-economic assessment, Energy Procedia, 105 (2020) 297–302.
  21. PT PLN (Persero), Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero), (2021).
  22. Arlene Fink, Conducting research literature reviews. Sage Publication, (2019).
  23. Y. Xu, K. Yang, J. Zhou, G. Zhao, Coal-biomass co-firing power generation technology : current status , challenges and policy implications, Sustainability, 12(9) (2020).
  24. T. R. Miles, L. L. Baxter, R. W. Bryers, B. M. Jenkins, and L. L. Oden, Alkali deposits, (1995).
  25. EUBIA, Biomass Co-Combustion, 2022. https://www.eubia.org/cms/wiki-biomass/co-combustion-with-biomass/ (accessed Jun. 06, 2022).
  26. D. A. Tillman, Biomass cofiring: the technology, the experience, the combustion consequences,” Biomass Bioenergy, 19(6) (2000) 365–384.
  27. P. Adhiguna, Indonesia’s biomass cofiring bet beware of the implementation risks, (2021).
  28. Chia-Chi Chang, Yen-Hau Chen, Wei-Ren Chang, Chao-Hsiung Wu, Yi-Hung Chen, Ching-Yuan Chang, Min-Hao Yuan, Je-Lueng Shie, Yuan-Shen Li, Sheng-Wei Chiang, Tzu-Yi Yang, Far-Ching Lin, Chun-Han Ko, Bo-Liang Liu, Kuang-Wei Liu, Shi-Guan Wang, The emissions from co-firing of biomass and torrefied biomass with coal in a chain-grate steam boiler, J. Air Waste Manag. Assoc., 69(12) (2019) 1467–1478.
  29. A. T. Atimtaya, U. Kayahan, A. Unlu, B. Engin, M.Varola, H. Olgun, H. Atakul, Co-firing of pine chips with turkish lignites in 750 KWth circulating fluidized bed combustion system, Bioresour. Technol., 224 (2016) 601-610.
  30. M. A. Youssef, S. S. Wahid, M. A. Mohamed, and A. A. Askalany, Experimental study on Egyptian biomass combustion in circulating fluidized bed, Appl. Energy, 86(12) (2009) 2644–2650.
  31. T. Unchaisri, S. Fukuda, A. Phongphiphat, S. Saetia, and B. Sajjakulnukit, Experimental study on combustion characteristics in a CFB during co-firing of coal with biomass pellets in Thailand, Int. ENergy J., 19 (2019) 101–114.
  32. M. Dirgantara, evaluation of prediction higher heating value ( HHV ) of bomass-based on ultimate analysis, Jejarig Mat. dan Sains, 1(2) (2019) 107–112.
  33. L. F. De Diego, C. A. Londonot, X. S. Wang, B. M. Gibbs, Influence of operating parameters on NOx and N20 axial profiles in a circulating fluidized bed combustor, Fuel, 75(8) (1996) 971–978.
  34. A. Gungor and N. Eskin, Two-dimensional coal combustion modeling of CFB, Int. J. Therm. Sci. 47 (2008) 157–174.
  35. F. Tanbar, S. Purba, A. S. Samsudin, E. Supriyanto, I. A. Aditya, Analisa karakteristik pengujian co-firing biomassa sawdust pada PLTU type pulverized coal boiler sebagai upaya bauran renewable energy, Offshore, 5(2) 92021) 50–56.
  36. N. Cahyo, H. H. Alif, H. D. Saksono, P. Paryanto, Performance and emission characteristic of co-firing of wood pellets with sub-bituminous coal in a 330 MWe pulverized coal boiler, (10) (2020) 2–5.
  37. N. Cahyo, H. H. Alif, I. A. Aditya, H. D. Saksono, Co-firing characteristics of wood pellets on pulverized power plant, IOP Conf. Ser.: Mater. Sci. Eng. 1098 (2021).
  38. N. Cahyo, R. B. Sitanggang, H. H. Alif, C. Hudaya, Co-combustion characteristics of low- and medium-rank coal of the circulating fluidized bed boiler coal power plant, Department of Electrical Engineering, (2019).
  39. I. Al-naiema, A. D. Estillore, I. A. Mudunkotuwa, V. H. Grassian, E. A. Stone, Impacts of co-firing biomass on emissions of particulate matter to the atmosphere, Fuel, 162 (2015) 111–120.
  40. B. Zhao, Y. Su, D. Liu, H. Zhang, W. Liu, G. Cui, SO2/NOx emissions and ash formation from algae biomass combustion : process characteristics and mechanisms, Energy, 113 (2016) 821–830.
  41. L. Zhang, Y. Ninomiya, Q. Wang, T. Yamashita, Influence of woody biomass (cedar chip) addition on the emissions of PM10 from pulverised coal combustion, Fuel, 90(1) (2011) 77–86.
  42. A. Lüsche, R. Madlener, Economic viability of biomass cofiring in new hard-coal power plants in Germany,” Biomass and Bioenergy, 57 (2013) 33–47.
  43. G. McEvilly, S. Abeysuriya, S. Dix, Facilitating the Adoption of biomass co-firing for power generation, (2011).
  44. Z. Khorshidi, M. T. Ho, D. E. Wiley, Techno-economic study of biomass co-firing with and without CO2 capture in an Australian black coal-fired power plant, Energy Procedia, 37 (2013) 6035–6042.
  45. A. Sugiyono, I. Febijanto, E. Hilmawan, Adiarso, Potential of biomass and coal co-firing power plants in Indonesia : a PESTEL analysis, IOP Conf. Ser. Earth Environ. Sci. Pap., (2022).