Main Article Content

Abstract

Indonesia has a high and diverse biodiversity, particularly in plant species. There are numerous advantages to using various plants that grow in Indonesia. Indonesia is also known for its abundance of spices and other natural resources. Rapid research is required in the use of this plant in order for bio-based products to be widely accepted. Using in-silico predictions by utilizing meta data provided by several credible sites is one of the important rapid methods in analyzing the benefits of the chemical content of Curcuma zedoaria (Temu putih). The goal of this in-silico analysis-based study is to gain an understanding of the pharmacology of a plant known as potency simplicia Curcuma zedoaria. Analyzing metadata from various sources is the research method. Prediction of absorption, distribution, metabolism, and excretion (ADME) was obtained from http://www.swissadme.ch/. The prediction of target proteins for phytochemical compounds of Curcuma zedoaria is available at http://www.swisstargetprediction.ch/, while the construction of active protein networks and interactions after induction of compounds contained in Curcuma zedoaria rhizome is available at https://string-db.org. According to the in-silico analysis performed with some of the software mentioned above, the rhizome of Curcuma zedoaria (Temu Putih) contains 71 active compounds, 64 of which are highly bioavailable. According to in-silico research, Curcuma zedoaria (Temu Putih) contains curcumin compounds (diarylheptanoid) and its derivatives have antioxidant activity, which functions to prevent stress from physiological stimulation that can increase the number of leukocytes.

Keywords

Biodiesel In silico, Prediction, Curcuma zedoaria. Anxiety Disorders

Article Details

How to Cite
Damayanti, F. D., Setiawan, R. A., Maretha, T. L., Andhani, T. V., Awwaluddin, F., Prihantono, R. P., & Jamil, . A. S. (2022). In-silico Analysis Potential Of Curcuma zedoaria As A Candidate For Degenerative Disease Therapy. EKSAKTA: Journal of Sciences and Data Analysis, 3(2). https://doi.org/10.20885/EKSAKTA.vol3.iss2.art3

References

  1. R. Setiowati, Imammuddin, M. and Rosnelly, R., Pengembangan Aplikasi Media Pembelajaran Tanaman Herbal Berbasis Android, IT (Informatic Technique) Journal, 9(2) (2021)130-141.
  2. Marliani, L., Anandari, Y. and Budiana, W., Pengaruh Pelarut, Waktu Dan Suhu Ekstraksi Terhadap Kandungan Senyawa Flavonoid Dan Kurkuminoid Ekstrak Rimpang Temu Putih (Curcuma zedoaria (Christm.) Roscoe), Jurnal Farmasi Galenika, 4 (Edisi Khusus SemNas TOI4) (2017) 35–39.
  3. Busman, Edrizal and Wirahmi, S. D., Daya Hambat Ekstrak Rimpang Temu Putih ( Curcuma zedoaria ) Terhaadap Streptococcus mutans dan Staphylococcus aureus, MENARA Ilmu, 13(6) (2019) 19–28.
  4. Alam, M.J., M.S. Islam, M.M. Rahman, S. Mazumder, & N. Ahmad, Effect of shoti (Curcuma zedoaria) on growth performances and hemato-biochemical parameters of broiler chicks. Bangl. J. Vet. Med. 14(1) (2016) 15-19.
  5. Wulandari, R. and Puspitasari, P., Pengaruh Infusa Rimpang Temu Putih (Curcuma zedoaria (Berg.) Roscoe) Terhadap Jumlah Leukosit Dan Differential Counting ( Diffcount ) Pada Kesembuhan Luka Laparatomi, 2(1) (2019), 22–27.
  6. Departemen Kesehatan Republik Indonesia, Kesehatan jiwa sebagai prioritas global (2020).
  7. Livia Prajogo, S. and Yudiarso, A., Metaanalisis Efektivitas Acceptance and Commitment Therapy untuk Menangani Gangguan Kecemasan Umum, Psikologika: Jurnal Pemikiran dan Penelitian Psikologi, 26(1) (2021) 85–100.
  8. Daina, A., Michielin, O., & Zoete, V., SwissADME: A free web tool to evaluate pharmacokinetics, drug likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, (2017) 1–13.
  9. Ferreira, L. L. G., & Andricopulo, A. D., ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5) (2019) 1157–1165.
  10. Zhou, R., Wu, K., Su, M., & Li, R., Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma. Environmental Toxicology and Pharmacology, (2019) 1–5.
  11. Daina, A., Michielin, O., & Zoete, V., SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1) (2019) W357–W3664.
  12. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Von Mering, C., STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic AcidsResearch, 47(D1) (2019) D607- D613.
  13. Wen, P. P., Shi, S. P., Xu, H. D., Wang, L. N., & Qiu, J. D., Accurate in-silico prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics, 32(20) (2016) 3107–3115.
  14. Anastasia, D. S., Luliana, S., Desnita, R., Isnindar, I., Atikah, N., Pengaruh Variasi Gula Terhadap Karakteristik Sediaan Minuman Serbuk Instan Kombinasi Rimpang Jahe Dan Temu Putih, Journal Syifa Sciences and Clinical Research, 4(2) (2022) 253–262.
  15. Manalu, L. P. and Adinegoro, H. (2018) Kondisi Proses Pengeringan Untuk Menghasilkan Simplisia Temuputih Standar, Jurnal Standardisasi, 18(1) (2018) 63.