Main Article Content

Abstract

The research on synthesis of carbon from rice groats at various pyrolysis temperatures and its application for the recovery of chromium wastewater from the tannery industry by varying pyrolysis temperatures at 300, 400, and 500 °C. The results of carbon synthesis are analyzed in the form of determination of yield, water content, ash content, and iodine number. The best pyrolysis condition with the quality requirement of carbon is at a pyrolysis temperature of 500 °C with 760 mg.g-1 (iodine number). Adsorption kinetics was also carried out to determine the adsorption kinetics of chromium ions from tannery wastewater. Adsorption kinetics model of chromium wastewater from the tannery industry corresponds to the pseudo-second-order kinetics model with R2 is 0.9857, k2 is 0.0093 g.mg-1.min-1, and qe is 28.5714 mg.g-1.

Keywords

carbon rice groat chromium Pirolysis tannery industry

Article Details

How to Cite
Winata, W. F., & Yanti, I. (2023). Synthesis of Carbon from Rice Groats at Various Pyrolysis Temperatures and Its Application for the Recovery of Chromium Wastewater from the Tannery Industry. EKSAKTA: Journal of Sciences and Data Analysis, 4(1), 23–28. https://doi.org/10.20885/EKSAKTA.vol4.iss1.art3

References

  1. K. Selvi, S. Pattabhi, K. Kardivelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresour. Technol., 80(1) (2001) 87-89.
  2. A.T. Alves, D.J. Lasmar, I.P.A. Miranda, J.S. Chaar, J.S. Reis, The Potential of Activated Carbon in the Treatment of Water for Human Consumption, a Study of the State of the Art and Its Techniques Used for Its Development, Adv. Biosci. Biotechnol., 12(6) (2021) 143-153.
  3. K. Wikantika, M.F. Ghazali, F.M. Dwivany, C. Novianti, L.F. Yayusman, A. Sutanto, Integrated Studies of Banana on Remote Sensing, Biogeography, and Biodiversity: An Indonesian Perspective, Divers., 14(4) (2022) 277.
  4. M.F. Wenno, W.A. Siahaya, F. Puturuhu, Determination of Land Characteristics for Tongka Langit Banana Plant (Musa troglodytarum L.) in Ambon Island, Agrologia, 11(1) (2022) 51-58.
  5. W.S. Ramadhani, S. Soemarno, P. Cahyono, A. Rahmat, L.M. Septiana, D. Prasetyo, Effect of Crop Rotation with Cavendish Banana Plants on Aluminum Saturation and Effective CEC in Pineapple Plantation, Central Lampung, J. Trop. Upland Res., 4 (2022) 39-45.
  6. R. Yu, X. Wu, J. Liu, C.A. Howitt, A.R. Bird, C.M. Liu, P.J. Larkin, Rice with Multilayer Aleurone: A Larger Sink for Multiple Micronutrients, Rice, 14(102) (2021) 1-18.
  7. R.P.T. S., A.R.L.E. Nelson, K. Ravichandran, U. Antony, Nutritional and functional properties of coloured rice varieties of South India: a review, J. Ethn. Foods, 6(11) (2019) 1-11.
  8. I.J. Joye, Encyclopedia of Food Chemistry, Reference Module in Food Science (2019) 256-264.
  9. H. Li, M.A. Fitzgerald, S. Prakash, T.M. Nicholson, R.G. Gilbert, The molecular structural features controlling stickiness in cooked rice, a major palatability determinant, Sci Rep., 7(43713) (2019).
  10. H. Li, S. Prakash, T. Nicholson, M.A. Fitzgerald, R.G. Gilbert, The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains, Food Chem., 196 (2016) 702-711.
  11. M.M. Said, G.R. John, C.F. Mhilu, Thermal Characteristics and Kinetics of Rice Husk for Pyrolysis Process, Int. J. Renew. Energy Res., 4(2) (2014) 275-278.
  12. M. Anshar, D. Tahir, Makhrani, F.N. Ani, Pyrolysis characteristic of rice husk with plastic bag as fuel for power generation by using a thermogravimetric analysis, IOP Conf. Ser.: Earth Environ. Sci., 105 (2018) 012034.
  13. M. Xie, J. Cheng, L.Xu, L. Wang, A. Chen, S. Zhang, X. Ren, Preparation of Activated Carbon from Co-Pyrolysis Activation of Fly Ash and Biomass, Energies, 15(18) (2022).
  14. K. Januszewicz, P. Kazimierski, M. Klein, D. Kardas, J. Luczak, Activated Carbon Produced by Pyrolysis of Waste Wood and Straw for Potential Wastewater Adsorption, Materials, 13(9) (2020) 2047.
  15. K. Vershinina, G. Nyashina, P. Strizhak, Combustion, Pyrolysis, and Gasification of Waste-Derived Fuel Slurries, Low-Grade Liquids, and High-Moisture Waste: Review, Appl. Sci., 12 (2022) 1039.
  16. J. Chojnacki, J. Kielar, L. Kukielka, T. Najser, A. Pachuta, B. Barner, A. Zdanowicz, J. Frantik, J. Najser, V. Peer, Batch Pyrolysis and Co-Pyrolysis of Beet Pulp and Wheat Straw, Materials, 15 (2022) 1230.
  17. F. Sulaiman, E. Suhendi, N. Prastuti, O.A. Choir, The Effect of Temperature and Time of Gasification Process and The Addition of Catalyst to The Composition of The Combustible Gas from The Wastes of Tobacco Leaves With Gasifier Updraft, Flywheel: Jurnal Teknik Mesin Untirta, 5(1) (2019) 1-8.
  18. V. Tihay, P. Gillard, Pyrolysis gases released during the thermal decomposition of three Mediterranean species, J. Anal. Appl. Pyrolysis, 88(2) (2010) 168–174.
  19. A. Izzulhaq, M. Udkhiyati, W.F. Winata, Efisiensi penggunaan air dan krom pada proses tanning sheep cabretta menggunakan metode exhausted tanning chrome, Berkala Penelitian Teknologi Kulit, Sepatu, dan Produk Kulit, 21(2) (2022) 275-282.
  20. S. Juhana, T. Maryati, W.F. Winata, Karakter fisik kulit domba samak kombinasi dengan bahan penyamak alumunium-mimosa, Berkala Penelitian Teknologi Kulit, Sepatu, dan Produk Kulit, 19(1) (2020) 8-14.
  21. L.Z. Jannah, M. Udkhiyati, W.F. Winata, Kombinasi enzimatis dan kimiawi untuk meminimalisir penggunaan Na2S pada proses unhairing, Berkala Penelitian Teknologi Kulit, Sepatu, dan Produk Kulit, 21(2) 2022 283-289.
  22. K. Wystalska, and A. Kwarciak-Kozlowska, The effect of Biodegrable Waste Pyrolisis Temperatures on Selected Biochar Properties, Materials, 14(7) (2021) 1644.
  23. C.Y. Hung, W.T. Tsai, J.W. Chen, Y.Q. Lin, Y.M. Chang, Characterization of biochar prepared from biogas digestate, Waste Manage., 66 (2017) 53–60.
  24. Y. Yasdi, R. Rinaldi, W.F. Winata, F.J. Anggraini, I. Yanti, T. Yulianti, Bentonite-Biochar Combination for Manganese Ion Removal from Water, Adv. Mater. Res., 1162 (2021) 81-86.
  25. I. Yanti, S.J. Santosa, I. Kartini, Kinetics study of Au (III) adsorption on gallic acid intercalated mg/Al-hydrotalcite, EKSAKTA: Journal of Sciences and Data Analysis, (2016) 27-35.
  26. Saruchi, V. Kumar, Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger, Arab. J. Chem., 12 (2019) 316-329.
  27. I. Yanti, U.I. Khaerunni, M.A. Kurniawan, W.F. Winata, Application of Mg/Al-hidrotalcite to reduce Cu(II) and Pb(II) metals in ground water in the environment of a used battery home industry at Pesarean Village, Tegal, Central Java, AIP Conference Proceedings 2229 (2020) 030039.