Main Article Content

Abstract

Insurance provides services in the form of services in facilitating a disaster that may occur based on a history of problems that have occurred. One of the private insurance companies in Indonesia has provided an insurance service program to guarantee employee welfare for policy-holding companies. The purpose of this research is to find out the pattern of association rules from the character of the insured by the policyholder so that it is expected to be able to make valuable information as input or consideration for the policymakers of private insurance companies in Indonesia. This study uses the rough set method as one of the efficient data analysis methods or techniques in database mining or knowledge discovery in relational databases. Rough sets provide algorithms to quickly and easily find hidden patterns in data. The results of the pattern of association rules for the character of the insured by the policyholder have formed as many as 14 rules. The certainty value is intended as a proportionate evaluation amount in order to find out the record of insurance claims that can be chosen by the insured. At the same time, the coverage value is intended as an evaluation amount to produce a decision for the insured to submit a claim record. The probable percentage of all events that are most recommended is seen from the highest coverage value related to record indicators, namely for administration by 45.9%, inspection by 44.1%, others by 40.8%, operation by 48.8%, financing by 46.3%, maintenance by 42%, and compensation of 65.9%.

Keywords

Association Rules Claim Rough Set

Article Details

How to Cite
Ameilea Chealsea Ekaputrie, & Achmad Fauzan. (2023). Analysis of the Character of the Insured by Policy Holders of Private Insurance Companies in Indonesia with the Rough Set Method. EKSAKTA: Journal of Sciences and Data Analysis, 4(2), 8–14. https://doi.org/10.20885/EKSAKTA.vol4.iss2.art2

References

  1. Kementrian Pertahanan, Penetapan Peraturan Pemerintah Pengganti Undang – Undang Nomor 1 Tahun 2013 Tentang Perubahan Kedua Atas Undang-Undang Nomor 24 Tahun 2003 Tentang Mahkamah Konstitusi Menjadi Undang-Undang. Indonesia; 2014.
  2. Junarto, Datamining Berbasis Web Menggunakan Mahasiswa S-1 Pada Universitas Darma Persada Mahasiswa S-1 Pada Universitas Darma Persada, Peranc. Dan Pembuatan Apl. Datamining Berbas. Web Menggunakan Algoritm. C4.5 Untuk Memprediksi Kelulusan Mahasiswa S-1 Pada Universitas Darma Persada; 2015.
  3. J. Nugraha, M. Muhajir, and R. Febrian, Perbandingan rough set dan algoritma apriori untuk sistem rekomendasi peprpustakaan, Unisda Journal of Mathematics and Computer Science, 4(2) (2018) 25–31.
  4. J. Komorowski, Z. Pawlak, L. Polkowski, and A. Skowron, Rough sets: a tutorial, Norway, 2000.
  5. L. A. V. Tamara, Klasifikasi data nasabah yang berpotensi membuka simpanan deposito mengggunakan algoritma rough set, Universitas Sanata Dharma; 2018.
  6. H. Juliansa, S. Defit, and S. Sumijan, Identifikaasi Tingkat Kerusakan Peralatan Laboratorium Komputer Menggunakan Metode Rough Set, Jurnal RESTI (Rekayasa Sist. dan Teknol. Informasi), 2(1) (2018) 410–415.
  7. U. Indriani, Penerapan Metode Rough Set Dalam Menentukan, Jurnal Teknik Informatika Kaputama, 2(1) (2018) 85–92.
  8. P. Sihombing, Implementasi Metode Rough Set Dalam Memprediksi Dampak Tanah Longsor (Studi Kasus Badan Penanggulangan Bencana Daerah (BPBD) Provinsi Sumatera Utara, Jurnal Riset Komputer (JURIKOM) 6(4) (2019) 407–415.
  9. Jeprianto and A. R. Aziz, Implementasi algoritma rough set dan Naive Bayes untuk mendapatkan rule dalam menyeleksi pemohon bantuan fasilitas rumah ibadah (studi kasus: pemerintah kabupaten Pringsewu), Jurnal Teknologi Komputer dan Sistem Informasi, 3(93) (2020) 74-83.
  10. S. Novianti and P. M. Hasugian, Implementasi Algoritma Rough Set Untuk Memprediksi Jumlah Pendaftar Siswa Baru Pada SMK Swasta Sinar Harapan, Jurnal Teknik Informatika UNIKA Santo Thomas, 6 (2021) 248–259.
  11. S. Samaray, Implementasi Algoritma Rough Set dengan Software Rosetta untuk Prediksi Hasil Belajar, Jurnal Eksplora Informatika, 11(1) (2022) 57–66.
  12. B. Irawan, Analisis kinerja metode rough set dan algoritma apriori dalam identifikasi pola penyakit demam tifoid, Universitas Sumatera Utara; 2016.
  13. Z. Pawlak, Some issues on rough sets, Lect. Notes Comput. Sci., 3100 (2004)1–58.
  14. Z. Pawlak, Rough set theory and its applications, J. Telecommun. Inf. Technol, 3 (2002) 7-10.
  15. D. Nofrinsyah and G. W. Nucahyo, Algoritma data mining dan pengujian. Deepublish, 2015.
  16. I. A. Anastasya, Penerapan metode If-Then rules dari rough set theory pada kecelakaan di lokasi pertambangan, Universitas Islam Indonesia; 2010.
  17. R. Soelaiman, W. Anggraeni, and E. Setiawan, Penerapan rough set quantitative measure pada aplikasi pendukung keputusan. Yogyakarta: Universitas Islam Indonesia; 2008.