Main Article Content
Abstract
Tourism is a crucial economic sector in Bali, Indonesia. Sustainable tourism management requires an understanding of the dynamics between tourist numbers and hotel occupancy levels. This study uses the SARIMAX (Seasonal Autoregressive Integrated Moving Average) method to estimate between the two indicators and reveals a positive correlation between the two indicators. The SARIMAX model effectively captures seasonal patterns and external factors, providing accurate forecasts and supporting tourism management in Bali. Monthly data from 2010 to 2023 were analyzed. Accurate estimates can help tourism stakeholders in formulating appropriate management strategies to optimize the tourism sector. Implementing the right strategy can help ensure the preservation of the local environment and culture, as well as long-term economic benefits for Bali. From the data we use the SARIMAX (6,1,0) (1,1,0)12 model with an AIC value of 1920.553 and a MAPE value of 27%.
Keywords
Article Details
Copyright (c) 2024 Abimanyu Arya, Yolan Triky, Kaia Raissa Akmalia, Abimanyu Arya Ramadhan, Abdul Ghufron, M. Al Haris
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Page, S. J., & Connell, J. (2021). Tourism: A Modern Synthesis (5th ed.).
- Kallioras, D., & Petrou, A. (2018). Seasonal and business cycle variability in hotel occupancy rates: Evidence from Greece. Tourism Management Perspectives, 27, 87-95.
- Aghelpour, A., Asgari, M. H., & Sharifi, M. A. (2019). Temperature prediction using SARIMA model and hybrid neural networks: A comparative study. Environmental Modelling & Software, 114, 104655.
- Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.). OTexts.
- Assaf, A. G., & Tsionas, M. G. (2019). Forecasting international tourist arrivals using time series models: Evidence from a panel data analysis. Tourism Management, 74, 199-218.
- Durrah, F. I., Yulia, Y., Parhusip, T. P., & Rusyana, A. (2018). Peramalan Jumlah Penumpang ZALILA, Z. (2019). PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA KE PROVINSI JAWA TENGAH DENGAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE WITH EXOGENEOUS INPUT (SARIMAX) (Doctoral dissertation, Muhammadiyah University, Semarang)Integrated Moving Average). Journal of Data Analysis, 1(1), 1-11.
- Dahlia, S., & Rahmi, D. (2023). Peramalan Produksi Tanaman Biofarmaka di Provinsi Riau dengan Metode Sarimax. Jurnal Pendidikan Ilmiah Transformatif, 7(12).
- Julianto, I. R., Indwiarti, I., & Rohmawati, A. A. (2021). Prediksi Jumlah Kunjungan Wisatawan Di Jawa Barat Dengan Model ARIMAX Dan SARIMAX Menggunakan Data Google Trends. eProceedings of Engineering, 8(4).
- Yusuf, R. A. M., & Yanti, T. S. (2021). Perbandingan Metode Seasonal Autoregressive Integreted Moving Average (SARIMA) dan Metode Fuzzy Time Series untuk Model Peramalan Jumlah Wisatawan Mancanegara di Bali. Prosiding Statistika, 597–605.
- Maulana, A. A., & Rosalina, H. (2024). IMPLEMENTASI METODE SARIMAX UNTUK PREDIKSI CURAH HUJAN JANGKA PENDEK DI PAGERAGEUNG, TASIKMALAYA. Jurnal Sumber Daya Air, 20(1), 39-50.
- Tobing, M. (2021). Pengaruh Jumlah Obyek Wisata, Tingkat Penghunian Kamar, Dan Jumlah Kunjungan Wisatawan Terhadap Pendapatan Asli Daerah Kabupaten Simalungun. Jurnal Ekuilnomi, 3(2), 127-139.
- ZALILA, Z. (2019). PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA KE PROVINSI JAWA TENGAH DENGAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE WITH EXOGENEOUS INPUT (SARIMAX) (Doctoral dissertation, Muhammadiyah University, Semarang)
- Prilistya, S. K., Permanasari, A. E., & Fauziati, S. (2021). The effect of the COVID-19 pandemic and Google trends on the forecasting of international tourist arrivals in Indonesia. 2021 IEEE Region 10 Symposium (TENSYMP), 1–8.
- ] Amrita, N. D. A., Handayani, M. M., & Erynayati, L. (2021). Pengaruh pandemi covid-19 terhadap pariwisata bali. Jurnal Manajemen Dan Bisnis Equilibrium, 7(2), 246–257.
- Permatasari, N. (2021, November). Penggunaan indeks google trend dalam peramalan jumlah pengunjung taman rekreasi selecta tahun 2020. In Seminar Nasional Official Statistics (Vol. 2021, No. 1, pp. 1019-102.
References
Page, S. J., & Connell, J. (2021). Tourism: A Modern Synthesis (5th ed.).
Kallioras, D., & Petrou, A. (2018). Seasonal and business cycle variability in hotel occupancy rates: Evidence from Greece. Tourism Management Perspectives, 27, 87-95.
Aghelpour, A., Asgari, M. H., & Sharifi, M. A. (2019). Temperature prediction using SARIMA model and hybrid neural networks: A comparative study. Environmental Modelling & Software, 114, 104655.
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.). OTexts.
Assaf, A. G., & Tsionas, M. G. (2019). Forecasting international tourist arrivals using time series models: Evidence from a panel data analysis. Tourism Management, 74, 199-218.
Durrah, F. I., Yulia, Y., Parhusip, T. P., & Rusyana, A. (2018). Peramalan Jumlah Penumpang ZALILA, Z. (2019). PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA KE PROVINSI JAWA TENGAH DENGAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE WITH EXOGENEOUS INPUT (SARIMAX) (Doctoral dissertation, Muhammadiyah University, Semarang)Integrated Moving Average). Journal of Data Analysis, 1(1), 1-11.
Dahlia, S., & Rahmi, D. (2023). Peramalan Produksi Tanaman Biofarmaka di Provinsi Riau dengan Metode Sarimax. Jurnal Pendidikan Ilmiah Transformatif, 7(12).
Julianto, I. R., Indwiarti, I., & Rohmawati, A. A. (2021). Prediksi Jumlah Kunjungan Wisatawan Di Jawa Barat Dengan Model ARIMAX Dan SARIMAX Menggunakan Data Google Trends. eProceedings of Engineering, 8(4).
Yusuf, R. A. M., & Yanti, T. S. (2021). Perbandingan Metode Seasonal Autoregressive Integreted Moving Average (SARIMA) dan Metode Fuzzy Time Series untuk Model Peramalan Jumlah Wisatawan Mancanegara di Bali. Prosiding Statistika, 597–605.
Maulana, A. A., & Rosalina, H. (2024). IMPLEMENTASI METODE SARIMAX UNTUK PREDIKSI CURAH HUJAN JANGKA PENDEK DI PAGERAGEUNG, TASIKMALAYA. Jurnal Sumber Daya Air, 20(1), 39-50.
Tobing, M. (2021). Pengaruh Jumlah Obyek Wisata, Tingkat Penghunian Kamar, Dan Jumlah Kunjungan Wisatawan Terhadap Pendapatan Asli Daerah Kabupaten Simalungun. Jurnal Ekuilnomi, 3(2), 127-139.
ZALILA, Z. (2019). PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA KE PROVINSI JAWA TENGAH DENGAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE WITH EXOGENEOUS INPUT (SARIMAX) (Doctoral dissertation, Muhammadiyah University, Semarang)
Prilistya, S. K., Permanasari, A. E., & Fauziati, S. (2021). The effect of the COVID-19 pandemic and Google trends on the forecasting of international tourist arrivals in Indonesia. 2021 IEEE Region 10 Symposium (TENSYMP), 1–8.
] Amrita, N. D. A., Handayani, M. M., & Erynayati, L. (2021). Pengaruh pandemi covid-19 terhadap pariwisata bali. Jurnal Manajemen Dan Bisnis Equilibrium, 7(2), 246–257.
Permatasari, N. (2021, November). Penggunaan indeks google trend dalam peramalan jumlah pengunjung taman rekreasi selecta tahun 2020. In Seminar Nasional Official Statistics (Vol. 2021, No. 1, pp. 1019-102.