Main Article Content

Abstract

Cyclooxygenase-2 (COX-2) mediates various physiological responses, including inflammation. In traditional medicine, the leaves of Hemigraphis alternata are commonly used to treat inflammation. The leaves have yielded 22 secondary metabolites that have been isolated. The computational analysis was conducted to identify the compounds with the greatest affinity for COX-2. The molecular docking procedure using DOCK 6.9 and molecular dynamics simulations using GROMACS 5.1.2 were used to screen test compounds. DOCK 6.9 assessed grid scores and ligand-receptor interactions, whereas GROMACS 5.1.2 examined the interactions, Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA), hydrogen bonds, and radius of gyration. The validation of the docking method resulted in an RMSD value of less than 2 Å, indicating that the docking protocols are suitable for screening potential ligands. Phytol exhibited the most attraction compared to the test and reference substances (diclofenac sodium), with a grid score of -32.85 kcal/mol. The MM-PBSA analysis revealed that phytol exhibited a greater affinity than the reference, as evidenced by binding free energy of -36.259 kcal/mol. These data suggest that phytol has the potential to be investigated as a possible source for the generation of COX-2 inhibitors.

Keywords

affinity docking molecular dynamics COX-2 Hemigraphis alternata

Article Details

How to Cite
Yeni, Y., Mochamad Dicky Yanuar Mamba’ul Rohman, & Supandi Supandi. (2025). Exploring the Potential of Hemigraphis alternata Leaves: Docking and Molecular Dynamics Analysis Targeting Cyclooxygenase-2 (COX-2). EKSAKTA: Journal of Sciences and Data Analysis, 6(1), 1–12. https://doi.org/10.20885/EKSAKTA.vol6.iss1.art1

References

  1. S.M.M. Rahman, M. Atikullah, M.N. Islam, M. Mohaimenul, F. Ahammad, M.S. Islam, B. Saha, M.H. Rahman, Anti-inflammatory, antinociceptive and antidiarrhoeal activities of methanol and ethyl acetate extract of Hemigraphis alternata leaves in mice, Clinical Phytoscience 5(1) (2019) 1-3.
  2. M. Sushma, S.Lahari, M.J. Naidu, K.K. Sree, G. Kavitha, Biological effects of Hemigraphis alternate-A review, International Journal of Indigenous Herbs and Drugs 5(3) (2020) 27-30.
  3. D. Sreekumar, S. Bhasker, P.R. Devi, M. C, Wound healing potency of Hemigraphis alternata (Burm.f) T Anderson leaf extract (HALE) with molecular evidence, Indian Journal of Experimental Biology 58 (2021) 236-245.
  4. J. Koshy, D. Sangeetha, Hemigraphis alternata leaf extract incorporated agar/pectin-based bio-engineered wound dressing materials for effective skin cancer wound care therapy, Polymers 15(1) (2023), 115.
  5. Y. Yeni, R.A. Rachmania, The prediction of pharmacokinetic properties of compounds in Hemigraphis alternata (Burm.F.) T. Ander leaves using pkCSM, Indonesian Journal of Chemistry 22(4) (2022) 1082-1089.
  6. S. Sutcliffe, M.A. Pontari, Inflammation and infection in the etiology of prostate cancer, Prostate Cancer: Science and Clinical Practice: Second Edition (2016) 13–20.
  7. E.S. Taher, T.S. Ibrahim, M. Fares, A.M.M. AL-Mahmoudy, A.F. Radwan, K.Y. Orabi, O.I. El-Sabbagh, Novel benzenesulfonamide and 1,2-benzisothiazol-3(2H)-one-1,1-dioxide derivatives as potential selective COX-2 inhibitors, European Journal of Medicinal Chemistry 171 (2019) 372–382.
  8. R. Kumar, N. Saha, P. Purohit, S.K. Garg, K. Seth, V.S. Meena, S. Dubey, K. Dave, R. Goyal, S.S. Sharma, U.C. Banerjee, A.K. Chakraborti, Cyclic enaminone as new chemotype for selective cyclooxygenase-2 inhibitory, anti-inflammatory, and analgesic activities. European Journal of Medicinal Chemistry 182 (2019) 111601.
  9. C.R. Bell, V.S. Pelly, A. Moeini, S.C. Chiang, E. Flanagan, C.P. Bromley, C. Clark, C.H. Earnshaw, M.A. Koufaki, E. Bonavita, S. Zelenay, Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations, Nature Communications 13(1) (2022) 2063.
  10. C. Rawat, S. Kukal, U.R. Dahiya, R. Kukreti, Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management, Journal of neuroinflammation 16(1) (2019) 1-5.
  11. M. Arora, S. Choudhary, P.K. Singh, B. Sapra, O. Silakari, Structural investigation on the selective COX-2 inhibitors mediated cardiotoxicity: A review, Life Sciences 251 (2020) 117631.
  12. N. Müller, COX-2 inhibitors, aspirin, and other potential anti-inflammatory treatments for psychiatric disorders, Frontiers in Psychiatry 10 (2019) 375.
  13. S. Brogi, T.C. Ramalho, K. Kuca, J.L. Medina-Franco, M. Valko, Editorial: In silico methods for drug design and discovery, Frontiers in Chemistry 8 (2020).
  14. B.K. Yap, C.Y. Lee, S.B. Choi, E.E. Kamarulzaman, M. Hariono, H.A. Wahab, In Silico In silico identification of novel inhibitors, Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics 3 (2019) 761-779.
  15. S. Singh, Q. Bani Baker, D.B. Singh, Molecular docking and molecular dynamics simulation, Bioinformatics: Methods and Applications (2022) 291–304.
  16. F. Wong, A. Krishnan, E.J. Zheng, H. Stärk, A.L. Manson, A.M. Earl, T. Jaakkola, J.J. Collins, Benchmarking AlphaFold ‐enabled molecular docking predictions for antibiotic discovery, Molecular Systems Biology 18(9) (2022) e11081.
  17. B. Zhang, H. Li, K. Yu, Z. Jin, Molecular docking-based computational platform for high-throughput virtual screening, CCF Transactions on High Performance Computing (2022) 1-12.
  18. X. Tao, Y. Huang, C. Wang, F. Chen, L. Yang, L. Ling, Z. Che, X. Chen, Recent developments in molecular docking technology applied in food science: a review, International Journal of Food Science and Technology 55(1) (2020) 33-45.
  19. Y. Yeni, S. Supandi, L.P. Dwita, S. Suswandari, M.S. Shaharun, N.S. Sambudi, Docking studies and molecular dynamics simulation of ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor, Journal of Pharmacy and Bioallied Sciences 12(Suppl 2) (2020) S836- S840.
  20. W. Song, R.A. Corey, T.B. Ansell, C.K. Cassidy, M.R. Horrell, A.L. Duncan, P.J. Stansfeld, M.S.P. Sansom, PyLipID: A python package for analysis of protein-lipid interactions from molecular dynamics simulations, Journal of Chemical Theory and Computation 18(2) (2022) 1188-1201.
  21. T.E. Balius, Y.S. Tan, M. Chakrabarti, DOCK 6: Incorporating hierarchical traversal through precomputed ligand conformations to enable large-scale docking, Journal of Computational Chemistry 45(1) (2024) 47-63.
  22. W. Atmajani, A.B. Kurniawan, R. Hapsari, B. Santoso, Kajian in silico agonis PPAR gamma-receptor protein (5Y2O) sebagai antihiperglikemia menggunakan dock6, The 9th University Research Colloqium (Urecol) 9(5) (2019) 193–200.
  23. L. Zheng, J. Meng, K. Jiang, H. Lan, Z. Wang, M. Lin, W. Li, H. Guo, Y. Wei, Y. Mu, Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term, Briefings in Bioinformatics 23(3)(2022) bbac051.
  24. E. Mateev, I. Valkova, B. Angelov, M. Georgieva, A. Zlatkov, Validation through re-docking, cross-docking and ligand enrichment in various well-resoluted MAO-B receptors, International Journal of Pharmaceutical Sciences and Research 13(3) (2022) 1099-1107.
  25. F.R.S. Santos, D.A.F. Nunes, W.G. Lima, D. Davyt, L.L. Santos, A.G. Taranto, M.S.J. Ferreira, Identification of Zika virus NS2B-NS3 protease inhibitors by structure-based virtual screening and drug repurposing approaches, Journal of Chemical Information and Modeling 60(2) (2020) 731-737.
  26. S. Koulgi, V. Jani, M. Uppuladinne, U. Sonavane, A.K. Nath, H. Darbari, R. Joshi, Drug repurposing studies targeting SARS-CoV-2: An ensemble docking approach on drug target 3C-like protease (3CLpro), Journal of Biomolecular Structure and Dynamics, 39(15) (2020) 5735-5755.
  27. L.D. Devhare, N. Gokhale, In-silico anti-ulcerative activity evaluation of some bioactive compounds from cassia tora and butea monospora through molecular docking approach, International Journal of Pharmaceutical Sciences and Research 14(2) (2023) 904–911.
  28. A. Nag, S. Paul, R. Banerjee, R. Kundu, In silico study of some selective phytochemicals against a hypothetical SARS-CoV-2 spike RBD using molecular docking tools, Computers in Biology and Medicine 137 (2021) 104818.
  29. R. Satpathy, Application of molecular docking methods on endocrine disrupting chemicals: A review, Journal of Applied Biotechnology Reports 7 (2) (2020) 74-80.
  30. G. Chen, A.J. Seukep, M. Guo, Recent advances in molecular docking for the research and discovery of potential marine drugs, Marine drugs 18(11) (2020) 545.
  31. P.K. Deb, N.A. Al-Shar’i, K.N. Venugopala, M. Pillay, P. Borah, In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis, Journal of Enzyme Inhibition and Medicinal Chemistry 36(1) (2021) 869-884.
  32. Y. Zhang, Y. Wang, W. Zhou, Y. Fan, J. Zhao, L. Zhu, S. Lu, T. Lu, Y. Chen, H. Liu, A combined drug discovery strategy based on machine learning and molecular docking, Chemical Biology and Drug Design 93(5) (2019) 685-699.
  33. K.C. Sivakumar, J. Haixiao, C.B. Naman, T.P. Sajeevan, Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process, Drug Development Research 81(6) (2020) 685-699.
  34. O.V. de Oliveira, G.B. Rocha, A.S. Paluch, L.T. Costa, Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening, Journal of Biomolecular Structure and Dynamics 39(1) (2021) 3924-3933.
  35. K. Vinothini, E.R.A.C. Daisy, M. Rajan, Mechanism of loading and release in nanocontainers, Smart Nanocontainers: Micro and Nano Technologies (2020) 67–87.
  36. F. Xiao, Z. Chen, Z. Wei, L. Tian, Hydrophobic interaction: A promising driving force for the biomedical applications of nucleic acids, Advanced Science 7(16) (2020) 2001048.
  37. G. Bella, A. Santoro, F. Nicolò, G. Bruno, M. Cordaro, Do secondary electrostatic interactions influence multiple dihydrogen bonds? AA− DD array on an amine‐borane aza‐coronand: Theoretical studies and synthesis, ChemPhysChem 22(6) (2021) 593-605.
  38. T.D. Pollard, W.C. Earnshaw, J. Lippincott-Schwartz, G.T. Johnson, (Eds.), Chapter 4-Biophysical Principles, in: Cell Biology (Third Ed.), Elsevier, 2017, pp. 53–62.
  39. R.J. Ouellette, J.D. Rawn, 1-Structure of Organic Compounds, in: R.J. Ouellette, J.D. Rawn (Eds.), Principles of Organic Chemistry, Elsevier, Boston, 2015, pp. 1–32.
  40. E. Stauffer, J.A. Dolan, R. Newman, Chapter 3-Review of Basic Organic Chemistry, in: E. Stauffer, J.A. Dolan, R. Newman (Eds.), Fire Debris Analysis, Academic Press, Burlington, 2008, pp. 49–83.
  41. B.L. Sari, S. Ibrahim, D.H. Tjahjono, Pharmacophore modeling, docking, and molecular dynamics simulation of flavonoids as inhibitors of urokinase-type plasminogen activator, Journal of Mathematical and Fundamental Sciences, 53, 3 (2021) 451-465.
  42. S. Rampogu, M.R. Lemuel, K.W. Lee, Virtual screening, molecular docking, molecular dynamics simulations and free energy calculations to discover potential DDX3 inhibitors, Advances in Cancer Biology-Metastasis 4 (2022) 100022.
  43. R. Kumari, R. Kumar, A. Lynn, G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations, Journal of Chemical Information and Modeling 54(1) (2014) 1951–1962.