Main Article Content
Abstract
The Karangkandri PLTU (Steam Power Plant) Industry in Cilacap is one of the large industries in the Cilacap industrial area, which has abundant coal-burning waste in the form of fly ash. The excess fly ash from PLTU Karangkandri can be used for the adsorption of polluted phosphate ions in the Donan River. The aim of this research is to determine the characterization of fly ash as an adsorbent using FTIR (Fourier Transform Infra-Red), XRD (X-Ray Diffraction), and XRF (X-Ray Fluorescence) instruments and its ability to adsorb phosphate ions in a polluted water sample. The first stage of this research was to take water samples from the Donan River at the 3 most polluted points. The second stage was to activate fly ash using wet grinding and hydrothermal methods as well as characterization of fly ash using FTIR, XRD, and XRF instruments. Then the effectiveness of the fly ash adsorbent in adsorbing phosphate ion was tested by using the spectrometric method. The analysis was carried out with the influence of mass variations in the adsorbent of 50, 100, 150, and 200 grams per 500 ml of water sample. This research found that activated fly ash by greener activation can removed 82,8% phosphate ion with 0,5g fly ash, remove 72.4% phosphate ion with 1 gram fly ash, removed 77.6% phosphate ion with 2 grams of fly ash. And the best one is 5 grams of fly ash can remove 93.2% phosphate ion.
Keywords
Article Details
Copyright (c) 2025 Dini Novi Rohmah, Aldina Khoerunnisa Nur Mas'udah, Vida Zenitha Sudariasri, Mesakh Trywira Wibowo Boikh, Prisca Caesa Moneteringtyas

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- A. Boretti and L. Rosa, “Reassessing the projections of the World Water Development Report,” npj Clean Water, vol. 2, no. 1, 2019, doi: 10.1038/s41545-019-0039-9.
- I. Benkov, M. Varbanov, T. Venelinov, and S. Tsakovski, “Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria,” Water (Switzerland), vol. 15, no. 10, 2023, doi: 10.3390/w15101961.
- S. Bhatt et al., “Jo ur of,” Results Eng., p. 102007, 2024, doi: 10.1016/j.rineng.2024.102007.
- T. H. Nguyen, B. Helm, H. Hettiarachchi, S. Caucci, and P. Krebs, “Quantifying the information content of a water quality monitoring network using principal component analysis: A case study of the freiberger mulde river basin, Germany,” Water (Switzerland), vol. 12, no. 2, 2020, doi: 10.3390/w12020420.
- K. Wieczorek, A. Turek, M. Szczesio, and W. M. Wolf, “A holistic approach to the spatio-temporal variability investigation of the main river water quality – The importance of tributaries,” Sci. Total Environ., vol. 906, no. October 2023, 2024, doi: 10.1016/j.scitotenv.2023.167588.
- N. D. Takarina, A. I. S. Purwiyanto, and Y. Suteja, “Cadmium (Cd), Copper (Cu), and Zinc (Zn) levels in commercial and non-commercial fishes in the Blanakan River Estuary, Indonesia: A preliminary study,” Mar. Pollut. Bull., vol. 170, no. February, p. 112607, 2021, doi: 10.1016/j.marpolbul.2021.112607.
- H. Asy’ari, “No Title空間像再生型立体映像の 研究動向,” Nhk技研, vol. 151, no. september 2016, pp. 10–17, 2015, doi: 10.1145/3132847.3132886.
- A. R. Utami, B. Widigdo, and Sulistiono, “Characteristics of the aquatic environment as a basis for brackish water pond development in the Cilacap Regency Area,” IOP Conf. Ser. Earth Environ. Sci., vol. 1260, no. 1, 2023, doi: 10.1088/1755-1315/1260/1/012027.
- R. Nur Afi Ati et al., “Ecological status of threatened mangroves Ceriops decandra and Merope angulata in mangrove ecosystem Segara Anakan Lagoon, Central Java, Indonesia,” BIO Web Conf., vol. 70, 2023, doi: 10.1051/bioconf/20237003001.
- K. Pangastuti, H. Effendi, Sulistiono, and G. Prayoga, “Distribution of heavy metals (Ag, Hg, Cd) concentration and the pollution status in the western part of Segara Anakan Lagoon, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 950, no. 1, 2022, doi: 10.1088/1755-1315/950/1/012051.
- D. M. B. Sitepu, I. Y. Perwira, and I. W. D. Kartika, “Kandungan nitrat dan fosfat pada air di Sungai Telagawaja Kabupaten Karangasem, Bali,” Curr.Trends Aq. Sci, vol. 10, no. 2, pp. 1–7, 2021.
- K. T. Utami and S. Syafrudin, “Pengelolaan Limbah Bahan Berbahaya Dan Beracun (B3) Studi Kasuspt. Holcim Indonesia, Tbk Narogong Plant,” J. Presipitasi Media Komun. dan Pengemb. Tek. Lingkung., vol. 15, no. 2, p. 127, 2018, doi: 10.14710/presipitasi.v15i2.127-132.
- J. Mokrzycki et al., “Copper ion-exchanged zeolite X from fly ash as an efficient adsorbent of phosphate ions from aqueous solutions,” J. Environ. Chem. Eng., vol. 10, no. 6, 2022, doi: 10.1016/j.jece.2022.108567.
- Y. Abdellaoui et al., “Synthesis of zirconium-modified Merlinoite from fly ash for enhanced removal of phosphate in aqueous medium: Experimental studies supported by Monte Carlo/SA simulations,” Chem. Eng. J., vol. 404, no. July 2020, p. 126600, 2021, doi: 10.1016/j.cej.2020.126600.
- L. Yang, T. Jiang, P. Xiong, S. Yang, M. Gao, and T. Nagasaka, “Green activating silica-alumina insoluble phase of fly ash to synthesize zeolite P with high adsorption capacity for Pb(II) in solution,” Adv. Powder Technol., vol. 34, no. 2, p. 103938, 2023, doi: 10.1016/j.apt.2023.103938.
- L. Ma et al., “Mechanism study on green high-efficiency hydrothermal activation of fly ash and its application prospect,” J. Clean. Prod., vol. 275, p. 122977, 2020, doi: 10.1016/j.jclepro.2020.122977.
- I. Desianti, Rahmaniah, and S. Zelviani, “Karakterisasi Nanosilika dari Abu Terbang (Fly Ash) PT. Bosowa Energi Jeneponto Dengan Menggunakan Metode Ultrasonic,” JFT J. Fis. dan Ter., vol. 5, no. 2, pp. 101–108, 2018.
- G. Prayoga, S. Hariyadi, Sulistiono, and H. Effendi, “Heavy metal (Pb, Hg, Cu) contamination level in sediment and water in Segara Anakan Lagoon, Cilacap, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 744, no. 1, 2021, doi: 10.1088/1755-1315/744/1/012055.
- R. Barlina and D. Torar, “Diversifikasi Produk Virgin Coconut Oil ( VCO ) Products Diversification of,” Balai Penelit. Tanam. Kelapa dan Palma Lain, pp. 1–12, 2002.
- A. R. Fashtali, M. Payan, P. Zanganeh Ranjbar, E. Khaksar Najafi, and R. Jamshidi Chenari, “Attenuation of Zn(II) and Cu(II) by low-alkali activated clay-fly ash liners,” Appl. Clay Sci., vol. 250, no. July 2023, p. 107298, 2024, doi: 10.1016/j.clay.2024.107298.
- M. Mudasir, K. Karelius, N. H. Aprilita, and E. T. Wahyuni, “Adsorption of mercury(II) on dithizone-immobilized natural zeolite,” J. Environ. Chem. Eng., vol. 4, no. 2, pp. 1839–1849, 2016, doi: 10.1016/j.jece.2016.03.016.
- D. N. Rohmah, N. H. Aprilita, and M. Mudasir, “Modification of Coal Fly Ash with Dithizone for Adsorption of Ni(II) Metal Ion,” Key Eng. Mater., vol. 927, pp. 20–27, 2022, doi: 10.4028/p-194e0w.
- B. N. Huda, E. T. Wahyuni, and M. Mudasir, “Eco-friendly immobilization of dithizone on coal bottom ash for the adsorption of lead(II) ion from water,” Results Eng., vol. 10, no. April, p. 100221, 2021, doi: 10.1016/j.rineng.2021.100221.
- S. L. Kareem, W. S. Jaber, L. A. Al-Maliki, R. A. Al-husseiny, S. K. Al-Mamoori, and N. Alansari, “Water quality assessment and phosphorus effect using water quality indices: Euphrates River- Iraq as a case study,” Groundw. Sustain. Dev., vol. 14, p. 100630, 2021, doi: 10.1016/j.gsd.2021.100630.
- C. Yan, D. Peng, X. Chen, Y. Zhang, H. Liu, and H. Xu, “Recovery of phosphate and removal of Cr(VI) from water by calcium-modified panda manure biochar: Synergistic effect of adsorption and reduction,” J. Taiwan Inst. Chem. Eng., vol. 170, no. November 2024, 2025, doi: 10.1016/j.jtice.2025.106015.
- L. K. O. K. Seng, “Extraction of Heavy Metals using Dithizone Method on Seawater,” vol. 2, no. Cd, pp. 429–434, 2018.
- X. Guo, Z. Zhao, X. Gao, Y. Dong, H. Fu, and X. Zhang, “Study on the adsorption performance of modified high silica fly ash for methylene blue,” RSC Adv., vol. 14, no. 30, pp. 21342–21354, 2024, doi: 10.1039/d4ra04017a.
- R. M. Hamidi, Z. Man, and K. A. Azizli, “Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer,” Procedia Eng., vol. 148, pp. 189–193, 2016, doi: 10.1016/j.proeng.2016.06.568.
- U. O. Aigbe, K. E. Ukhurebor, R. B. Onyancha, O. A. Osibote, H. Darmokoesoemo, and H. S. Kusuma, “Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review,” J. Mater. Res. Technol., vol. 14, no. August, pp. 2751–2774, 2021, doi: 10.1016/j.jmrt.2021.07.140.
- P. Lv, R. Meng, Z. Mao, and M. Deng, “Hydrothermal synthesis of sodalite-type n-a-s-h from fly ash to remove ammonium and phosphorus from water,” Materials (Basel)., vol. 14, no. 11, 2021, doi: 10.3390/ma14112741.
- K. Zhou et al., “Enhancing phosphate removal from wastewater using optimized fly ash adsorbents,” Desalin. Water Treat., vol. 321, no. December 2024, p. 101056, 2025, doi: 10.1016/j.dwt.2025.101056.
References
A. Boretti and L. Rosa, “Reassessing the projections of the World Water Development Report,” npj Clean Water, vol. 2, no. 1, 2019, doi: 10.1038/s41545-019-0039-9.
I. Benkov, M. Varbanov, T. Venelinov, and S. Tsakovski, “Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria,” Water (Switzerland), vol. 15, no. 10, 2023, doi: 10.3390/w15101961.
S. Bhatt et al., “Jo ur of,” Results Eng., p. 102007, 2024, doi: 10.1016/j.rineng.2024.102007.
T. H. Nguyen, B. Helm, H. Hettiarachchi, S. Caucci, and P. Krebs, “Quantifying the information content of a water quality monitoring network using principal component analysis: A case study of the freiberger mulde river basin, Germany,” Water (Switzerland), vol. 12, no. 2, 2020, doi: 10.3390/w12020420.
K. Wieczorek, A. Turek, M. Szczesio, and W. M. Wolf, “A holistic approach to the spatio-temporal variability investigation of the main river water quality – The importance of tributaries,” Sci. Total Environ., vol. 906, no. October 2023, 2024, doi: 10.1016/j.scitotenv.2023.167588.
N. D. Takarina, A. I. S. Purwiyanto, and Y. Suteja, “Cadmium (Cd), Copper (Cu), and Zinc (Zn) levels in commercial and non-commercial fishes in the Blanakan River Estuary, Indonesia: A preliminary study,” Mar. Pollut. Bull., vol. 170, no. February, p. 112607, 2021, doi: 10.1016/j.marpolbul.2021.112607.
H. Asy’ari, “No Title空間像再生型立体映像の 研究動向,” Nhk技研, vol. 151, no. september 2016, pp. 10–17, 2015, doi: 10.1145/3132847.3132886.
A. R. Utami, B. Widigdo, and Sulistiono, “Characteristics of the aquatic environment as a basis for brackish water pond development in the Cilacap Regency Area,” IOP Conf. Ser. Earth Environ. Sci., vol. 1260, no. 1, 2023, doi: 10.1088/1755-1315/1260/1/012027.
R. Nur Afi Ati et al., “Ecological status of threatened mangroves Ceriops decandra and Merope angulata in mangrove ecosystem Segara Anakan Lagoon, Central Java, Indonesia,” BIO Web Conf., vol. 70, 2023, doi: 10.1051/bioconf/20237003001.
K. Pangastuti, H. Effendi, Sulistiono, and G. Prayoga, “Distribution of heavy metals (Ag, Hg, Cd) concentration and the pollution status in the western part of Segara Anakan Lagoon, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 950, no. 1, 2022, doi: 10.1088/1755-1315/950/1/012051.
D. M. B. Sitepu, I. Y. Perwira, and I. W. D. Kartika, “Kandungan nitrat dan fosfat pada air di Sungai Telagawaja Kabupaten Karangasem, Bali,” Curr.Trends Aq. Sci, vol. 10, no. 2, pp. 1–7, 2021.
K. T. Utami and S. Syafrudin, “Pengelolaan Limbah Bahan Berbahaya Dan Beracun (B3) Studi Kasuspt. Holcim Indonesia, Tbk Narogong Plant,” J. Presipitasi Media Komun. dan Pengemb. Tek. Lingkung., vol. 15, no. 2, p. 127, 2018, doi: 10.14710/presipitasi.v15i2.127-132.
J. Mokrzycki et al., “Copper ion-exchanged zeolite X from fly ash as an efficient adsorbent of phosphate ions from aqueous solutions,” J. Environ. Chem. Eng., vol. 10, no. 6, 2022, doi: 10.1016/j.jece.2022.108567.
Y. Abdellaoui et al., “Synthesis of zirconium-modified Merlinoite from fly ash for enhanced removal of phosphate in aqueous medium: Experimental studies supported by Monte Carlo/SA simulations,” Chem. Eng. J., vol. 404, no. July 2020, p. 126600, 2021, doi: 10.1016/j.cej.2020.126600.
L. Yang, T. Jiang, P. Xiong, S. Yang, M. Gao, and T. Nagasaka, “Green activating silica-alumina insoluble phase of fly ash to synthesize zeolite P with high adsorption capacity for Pb(II) in solution,” Adv. Powder Technol., vol. 34, no. 2, p. 103938, 2023, doi: 10.1016/j.apt.2023.103938.
L. Ma et al., “Mechanism study on green high-efficiency hydrothermal activation of fly ash and its application prospect,” J. Clean. Prod., vol. 275, p. 122977, 2020, doi: 10.1016/j.jclepro.2020.122977.
I. Desianti, Rahmaniah, and S. Zelviani, “Karakterisasi Nanosilika dari Abu Terbang (Fly Ash) PT. Bosowa Energi Jeneponto Dengan Menggunakan Metode Ultrasonic,” JFT J. Fis. dan Ter., vol. 5, no. 2, pp. 101–108, 2018.
G. Prayoga, S. Hariyadi, Sulistiono, and H. Effendi, “Heavy metal (Pb, Hg, Cu) contamination level in sediment and water in Segara Anakan Lagoon, Cilacap, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 744, no. 1, 2021, doi: 10.1088/1755-1315/744/1/012055.
R. Barlina and D. Torar, “Diversifikasi Produk Virgin Coconut Oil ( VCO ) Products Diversification of,” Balai Penelit. Tanam. Kelapa dan Palma Lain, pp. 1–12, 2002.
A. R. Fashtali, M. Payan, P. Zanganeh Ranjbar, E. Khaksar Najafi, and R. Jamshidi Chenari, “Attenuation of Zn(II) and Cu(II) by low-alkali activated clay-fly ash liners,” Appl. Clay Sci., vol. 250, no. July 2023, p. 107298, 2024, doi: 10.1016/j.clay.2024.107298.
M. Mudasir, K. Karelius, N. H. Aprilita, and E. T. Wahyuni, “Adsorption of mercury(II) on dithizone-immobilized natural zeolite,” J. Environ. Chem. Eng., vol. 4, no. 2, pp. 1839–1849, 2016, doi: 10.1016/j.jece.2016.03.016.
D. N. Rohmah, N. H. Aprilita, and M. Mudasir, “Modification of Coal Fly Ash with Dithizone for Adsorption of Ni(II) Metal Ion,” Key Eng. Mater., vol. 927, pp. 20–27, 2022, doi: 10.4028/p-194e0w.
B. N. Huda, E. T. Wahyuni, and M. Mudasir, “Eco-friendly immobilization of dithizone on coal bottom ash for the adsorption of lead(II) ion from water,” Results Eng., vol. 10, no. April, p. 100221, 2021, doi: 10.1016/j.rineng.2021.100221.
S. L. Kareem, W. S. Jaber, L. A. Al-Maliki, R. A. Al-husseiny, S. K. Al-Mamoori, and N. Alansari, “Water quality assessment and phosphorus effect using water quality indices: Euphrates River- Iraq as a case study,” Groundw. Sustain. Dev., vol. 14, p. 100630, 2021, doi: 10.1016/j.gsd.2021.100630.
C. Yan, D. Peng, X. Chen, Y. Zhang, H. Liu, and H. Xu, “Recovery of phosphate and removal of Cr(VI) from water by calcium-modified panda manure biochar: Synergistic effect of adsorption and reduction,” J. Taiwan Inst. Chem. Eng., vol. 170, no. November 2024, 2025, doi: 10.1016/j.jtice.2025.106015.
L. K. O. K. Seng, “Extraction of Heavy Metals using Dithizone Method on Seawater,” vol. 2, no. Cd, pp. 429–434, 2018.
X. Guo, Z. Zhao, X. Gao, Y. Dong, H. Fu, and X. Zhang, “Study on the adsorption performance of modified high silica fly ash for methylene blue,” RSC Adv., vol. 14, no. 30, pp. 21342–21354, 2024, doi: 10.1039/d4ra04017a.
R. M. Hamidi, Z. Man, and K. A. Azizli, “Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer,” Procedia Eng., vol. 148, pp. 189–193, 2016, doi: 10.1016/j.proeng.2016.06.568.
U. O. Aigbe, K. E. Ukhurebor, R. B. Onyancha, O. A. Osibote, H. Darmokoesoemo, and H. S. Kusuma, “Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review,” J. Mater. Res. Technol., vol. 14, no. August, pp. 2751–2774, 2021, doi: 10.1016/j.jmrt.2021.07.140.
P. Lv, R. Meng, Z. Mao, and M. Deng, “Hydrothermal synthesis of sodalite-type n-a-s-h from fly ash to remove ammonium and phosphorus from water,” Materials (Basel)., vol. 14, no. 11, 2021, doi: 10.3390/ma14112741.
K. Zhou et al., “Enhancing phosphate removal from wastewater using optimized fly ash adsorbents,” Desalin. Water Treat., vol. 321, no. December 2024, p. 101056, 2025, doi: 10.1016/j.dwt.2025.101056.