Main Article Content

Abstract

Telah dilakukan kajian teoritis tentang struktur dan sifat elektronik dari senyawa Ca(BH4)2·2NH3 sebagai salah satu material yang berpotensi digunakan untuk menyimpan dan penghasil hidrogen melalui proses dehidrogenasi. Perhitungan teoritis energi, Density of States dan celah pita elektron dari struktur kompleks Ca(BH4)2·2NH3 dilakukan dengan Density Functional Theory (DFT) dan fungsi energi perubahan dan korelasi menggunakan metode Generalized Gradient Approximation (GGA). Berdasarkan analisis struktur dan sifat elektronik kristal kompleks Ca(BH4)2·2NH3 diperoleh atom–atom hidrogen yang berpotensi sebagai sumber molekul hidrogen yaitu hidrogen (Hδ-) dari BH4 dan hidrogen (Hδ+) dari NH3 dalam bentuk ikatan dihidrogen N– H···H–B. Hasil perhitungan simulasi didapatkan besar celah energi band gap sebesar 5,68 eV, yang menyatakan material ini sebagai insulator. Dari data analisis lebih lanjut terhadap studi pelepasan molekul H2 vs NH3 sebesar 2,30 eV vs 1,52 eV, mengindikasikan material Ca(BH4)2·2NH3 lebih rendah untuk melepaskan molekul H2 dibanding NH3, data ini sesuai dengan hasil pengamatan eksperimen.

Keywords

penyimpan hidrogen density functional theory ikatan dihidrogen

Article Details

Author Biography

Muhammad Arsyik Kurniawan, Program Studi Kimia, Universitas Islam Indonesia


How to Cite
Kurniawan, M. A. (2016). Studi Komputasi Metode Ab Initio Dft Dalam Kajian Struktural Dan Sifat Elektronik Senyawa Kalsium Borohidrid-Diamonia Sebagai Penyimpan Hidrogen. EKSAKTA: Journal of Sciences and Data Analysis, 15(1-2), 23–37. https://doi.org/10.20885/eksakta.vol15.iss1-2.art3

References

  1. Anonim, 2007. Hydrogen Storage Materials. Mater. Matters 2, 3–7.
  2. Ashcroft, N.W., Mermin, N.D., 1976. Solid state physics. Harcourt College Publishers, New York; London.
  3. Atkins, P.W., 2006. Atkins’ Physical chemistry, 8th ed. ed. Oxford University Press, Oxford ; New York.
  4. Baitalow, F., Baumann, J., Wolf, G., Jaenicke-Rößler, K., Leitner, G., 2002. Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods. Thermochim. Acta 391, 159–168. doi:10.1016/S0040-6031(02)00173-9
  5. Blöchl, P.E., 1994. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979. doi:10.1103/PhysRevB.50.17953
  6. Chen, X., Yu, X., 2012. Electronic Structure and Initial Dehydrogenation Mechanism of M(BH4)2•2NH3 (M = Mg, Ca, and Zn): A First-Principles Investigation. J. Phys. Chem. C 116, 11900–11906. doi:10.1021/jp301986k
  7. Chua, Y.S., Wu, G., Xiong, Z., He, T., Chen, P., 2009. Calcium Amidoborane Ammoniate—Synthesis, Structure, and Hydrogen Storage Properties. Chem. Mater. 21, 4899–4904. doi:10.1021/cm9020222
  8. Chu, H., Wu, G., Xiong, Z., Guo, J., He, T., Chen, P., 2010. Structure and Hydrogen Storage Properties of Calcium Borohydride Diammoniate. Chem. Mater. 22, 6021–6028. doi:10.1021/cm1023234
  9. Custelcean, R., Jackson, J.E., 2001. Dihydrogen Bonding: Structures, Energetics, and Dynamics. Chem. Rev. 101, 1963–1980. doi:10.1021/cr000021b
  10. Frueh, S., Kellett, R., Mallery, C., Molter, T., Willis, W.S., King’ondu, C., Suib, S.L., 2011. Pyrolytic Decomposition of Ammonia Borane to Boron Nitride. Inorg. Chem. 50, 783–792. doi:10.1021/ic101020k
  11. Gonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Côté, M., Deutsch, T., Genovese, L., Ghosez, P., Giantomassi, M., Goedecker, S., Hamann, D.R., Hermet, P., Jollet, F., Jomard, G., Leroux, S., Mancini, M., Mazevet, S., Oliveira, M.J.T., Onida, G., Pouillon, Y., Rangel, T., Rignanese, G.-M., Sangalli, D., Shaltaf, R., Torrent, M., Verstraete, M.J., Zerah, G., Zwanziger, J.W., 2009. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615. doi:10.1016/j.cpc.2009.07.007
  12. Hohenberg, P., Kohn, W., 1964. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871. doi:10.1103/PhysRev.136.B864
  13. Holzwarth, N.A.W., Tackett, A.R., Matthews, G.E., 2001. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions. Comput. Phys. Commun. 135, 329–347. doi:10.1016/S0010-4655(00)00244-7
  14. Irani, R.S., 2002. Hydrogen storage: high-pressure gas contaiment 27, 680–684.
  15. Kohn, W., Sham, L.J., 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133–A1138. doi:10.1103/PhysRev.140.A1133
  16. Leach, A.R., 2001. Molecular modelling: principles and applications. Prentice Hall, Harlow [etc.].
  17. Majzoub, E.H., Rönnebro, E., 2009. Crystal Structures of Calcium Borohydride: Theory and Experiment. J. Phys. Chem. C 113, 3352–3358. doi:10.1021/jp8064322
  18. Momma, K., Izumi, F., 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276. doi:10.1107/S0021889811038970
  19. Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868. doi:10.1103/PhysRevLett.77.3865
  20. Senker, J., Jacobs, H., Müller, M., Press, W., Müller, P., Mayer, H.M., Ibberson, R.M., 1998. Reorientational Dynamics of Amide Ions in Isotypic Phases of Strontium and Calcium Amide. 1. Neutron Diffraction Experiments. J. Phys. Chem. B 102, 931–940. doi:10.1021/jp972907y
  21. Soloveichik, G., Her, J.-H., Stephens, P.W., Gao, Y., Rijssenbeek, J., Andrus, M., Zhao, J.-C., 2008. Ammine Magnesium Borohydride Complex as a New Material for Hydrogen Storage: Structure and Properties of Mg(BH4)2•2NH3. Inorg. Chem. 47, 4290–4298. doi:10.1021/ic7023633
  22. Wells, A.F., 1984. Structural inorganic chemistry, 5th ed. ed. Clarendon Press ; Oxford University Press, Oxford [Oxfordshire] : New York.
  23. Yuan, P.-F., Wang, F., Sun, Q., Jia, Y., Guo, Z.-X., 2012. Structural, energetic and thermodynamic analyses of Ca(BH4)2•2NH3 from first principles calculations. J. Solid State Chem. 185, 206–212. doi:10.1016/j.jssc.2011.11.009
  24. Zhang, G., Yang, J., Fu, H., Zheng, J., Li, Y., Li, X., 2012. Structural and electronic properties of the hydrogen storage compound Ca(BH4)2•2NH3 from first-principles. Comput. Mater. Sci. 54, 345–349. doi:10.1016/j.commatsci.2011.10.037