Main Article Content

Abstract

The global rise in carbon emissions has intensified the urgency of transitioning toward renewable, environmentally friendly and sustainable energy systems, particularly in industrial sectors with high fossil fuel dependency such as oil and gas. Solar panels represent a clean and reliable alternative for electricity generation. This research evaluates the performance of a 119.88 kWp monocrystalline solar panel system integrated with an Internet of Things (IoT)-based on-grid monitoring system at the Grissik Administration Building. Over a 30-day observation period, the solar panels supplied an average of 432 kWh/day, approximately 72.07% of the installed capacity, reducing fuel gas consumption by 0.19 MMSCFD and lowering CO₂ emissions by 10.38 tons. System efficiency exceeded 80% under optimal irradiation conditions. The IoT-based monitoring platform facilitated real-time data and system control, improving operational decision-making and reliability. This research provides novel empirical evidence of field-scale performance of IoT-integrated photovoltaic systems within Indonesia’s oil and gas facilities, demonstrating their significant role in enhancing industrial energy efficiency and supporting the national clean energy transition.

Keywords

monocrystalline solar panel on-grid system IoT Monitoring CO₂ emissions renewable energy systems

Article Details

How to Cite
Putra, A. E., Hasan, A. ., & Bow, Y. . (2025). Performance Evaluation of 119.88 kWp IoTBased On-Grid Solar System at Admin Building Grissik. EKSAKTA: Journal of Sciences and Data Analysis, 6(2), 124–134. https://doi.org/10.20885/EKSAKTA.vol6.iss2.art8

References

  1. F. Ullah, K. Hasrat, W. Abdelfattah, N. Ben, M. Mu, and S. Wang, “Comprehensive life cycle analysis of monocrystalline and polycrystalline solar PV panels in Nanjing , China : Effects on the environment , performance , and recycling opportunities,” vol. 522, no. May, 2025.
  2. A. Adi, “Kementerian ESDM Gelar Diseminasi HEESI 2023,” Esdm, pp. 7–9, 2024, [Online]. Available: https://www.esdm.go.id/en/media-center/news-archives/kementerian-esdm-gelar-diseminasi-heesi-2023
  3. E. V. Novaldo, T. Dewi, and Rusdianasari, “Solar Energy as an Alternative Energy Source in Hydroponic Agriculture : A Pilot Study,” no. September, pp. 1–5, 2022, doi: 10.1109/IEIT56384.2022.9967806.
  4. H. Aziz, P. IPM, and M. B. Sitorus, “Analisis Hasil Uji Pembangkit Listrik Hybrid Turbin Angin 1kWh Dan Panel Surya 100 WP,” SUTET, vol. 9, no. 1, pp. 16–25, Jun. 2019, doi: 10.33322/sutet.v9i1.384.
  5. D. Jenderal Ketenagalistrikan Kementerian ESDM and Energi, “Pedoman Penghitungan dan Pelaporan Inventarisasi Gas Rumah Kaca (Bidang Energi - Sub Bidang Ketenagalistrikan),” Kementerian Energi dan Sumber Daya Mineral, vol. 1, no. 1, pp. 1–124, 2018.
  6. A. Zullah, T. Dewi, and Rusdianasari, “Performance analysis of ship mounting PV panels deployed in Sungsang Estuary and Bangka Strait , Indonesia,” vol. 28, no. 1, pp. 169–182, 2024.
  7. “Buku Manual Solar PV Powe Plant Medco Grissik E&P LTD – 885 kWp,” 2025.
  8. I. Flora, F. Metegam, E. Wolff, M. Huart, and V. S. Chara-dackou, “Evaluation of on-grid and off-grid solar photovoltaic sites in Cameroon using geographic information systems , fuzzy logic , and multi-criteria analysis,” vol. 318, no. February, 2025, doi: 10.1016/j.energy.2025.134614.
  9. D. D. P. Rani, D. Suresh, P. Rao, C. H. M. Akram, and N. Hemalatha, “Materials Today : Proceedings IoT based smart solar energy monitoring systems,” Materials Today: Proceedings, vol. 80, pp. 3540–3545, 2023, doi: 10.1016/j.matpr.2021.07.293.
  10. C. N. Nwagu, C. Oliver, D. V. V Kallon, and V. S. Aigbodion, “Integrating solar and wind energy into the electricity grid for improved power accessibility,” Unconventional Resources, vol. 5, no. May 2024, p. 100129, 2025, doi: 10.1016/j.uncres.2024.100129.
  11. D. Kirchem, M. Kendziorski, E. Wiebrow, W. Schill, C. Kemfert, and C. Von Hirschhausen, “Smart Energy Solar prosumage under different pricing regimes : Interactions with the transmission grid,” Smart Energy, vol. 19, no. June, p. 100193, 2025, doi: 10.1016/j.segy.2025.100193.
  12. M. Raj, W. K. Biswas, and C. Pon, “Advancements and challenges in solar photovoltaic technologies : enhancing technical performance for sustainable clean energy – A review,” Solar Energy Advances, vol. 5, no. September 2024, p. 100084, 2025, doi: 10.1016/j.seja.2024.100084.
  13. P. Harahap, “Pengaruh Temperatur Permukaan Panel Surya Terhadap Daya Yang Dihasilkan Dari Berbagai Jenis Sel Surya,” RELE (Rekayasa Elektrikall dan Energi), vol. 2, no. 2, pp. 73–80, 2020.
  14. N. Sartika, A. N. R. Fajri, and L. Kamelia, “Perancangan Dan Simulasi Sistem Pembangkit Listrik Tenaga Surya (Plts) Atap Pada Masjid Jami’ Al-Muhajirin Bekasi,” Transmisi: Jurnal Ilmiah Teknik Elektro, vol. 25, no. 1, pp. 1–9, Feb. 2023, doi: 10.14710/transmisi.25.1.1-9.
  15. M. Isnaeni, Kusmanto. R, and A. Hasan, “Optimization of Output Power and Photovoltaic Efficiency With Adding Chromel Alumel Elements,” in Optimization of Output Power and Photovoltaic Efficiency With Adding Chromel Alumel Elements, 2022, pp. 238–243.
  16. D. Herliyanso and O. A. Rozak, “Perencanaan Sistem Pembangkit Listrik Tenaga Surya Off-grid Sebagai Suplai Daya Listrik Perpustakaan Universitas Pamulang,” 2023. doi: 10.32722/ees.v5i1.5612.
  17. K. Saka and M. Fatih, “Case Studies in Thermal Engineering Performance assessment and useful solar radiation analysis of a grid-connected photovoltaic plant in Türkiye,” Case Studies in Thermal Engineering, vol. 73, no. May, p. 106565, 2025, doi: 10.1016/j.csite.2025.106565.
  18. H. Moussa, T. Ibrahim, J. Faraj, S. Ali, M. Khaled, and M. Darwiche, “Case Studies in Thermal Engineering Optimizing solar panel tilt angles for enhanced energy Production : Case studies in Lebanon,” Case Studies in Thermal Engineering, vol. 73, no. July, p. 106720, 2025, doi: 10.1016/j.csite.2025.106720.
  19. H. Wibowo, Y. Bow, and C. R. Sitompul, “Performance Comparison Analysis of Fixed and Solar-Tracker Installed Panel at PV System Performance Comparison Analysis of Fixed and Solar- Tracker Installed Panel at PV System”, doi: 10.1088/1755-1315/709/1/012003.
  20. P. D. Fauzi, R. Kusumanto D., and A. Hasan, “Hybrid Passive Cooling System for Rooftop Photovoltaics with Varying Height Clearances,” International Journal of Research in Vocational Studies (IJRVOCAS), vol. 5, no. 2, pp. 13–21, 2025.
  21. A. A. Nugroho, H. Isyanto, and W. Ibrahim, “Analisa Perbandingan Kinerja Panel Surya Jenis Monocrystaline dan Thin Film,” RESISTOR (Elektronika Kendali Telekomunikasi Tenaga Listrik Komputer, vol. 7, no. 1, pp. 51–58, 2024, [Online]. Available: https://jurnal.umj.ac.id/index.php/resistor/article/view/21565
  22. F. Martinez-gil, C. Sansom, and A. Fernández-garcía, “Maintenance techniques to increase solar energy production : A review,” Energy Nexus, vol. 17, no. November 2024, p. 100384, 2025, doi: 10.1016/j.nexus.2025.100384.
  23. S. Yakubu et al., “A holistic review of the effects of dust buildup on solar photovoltaic panel efficiency,” Solar Compass, vol. 13, no. November 2024, p. 100101, 2025, doi: 10.1016/j.solcom.2024.100101.
  24. F. Lei et al., “An integrated framework for assessing solar photovoltaic potential of building surfaces at city scale using parametric simulation and optimized machine learning models,” Sustainable Cities and Society, vol. 133, no. September, p. 106836, 2025, doi: 10.1016/j.scs.2025.106836.
No Related Submission Found