Main Article Content

Abstract

The source of water flow in rivers or irrigation canals has a relatively small flow rate of water, which can be used as a pico hydropower plant. One of the main components of a pico hydropower plant is a water wheel, a hybrid pico hydropowerplant is a combination of hydroelectric power and solar power. By utilizing the power of the water flow in a small river or ditch in Wukirsari hamlet, we designed a waterwheel that will convert the energy of motion into electrical energy. The solar panel system designer uses a 50 wp solar cell, a 300 W inverter, a 10 Ampere solar charger controller, and a 12 Volt, 32 Ah battery. The no-load test results on the performance of the single pinwheels and the performance of the double pinwheels at a water level of 37 cm get an average power of 3.2 W and 2.11 W. The resulting voltage is 6.72 V, the current is 0.46 A for a single mill, while for the double pinwheel the voltage is 5,26 , and the current is 0.38 A. From the experimental results, it is better if the single pinwheel and the double pinwheel are used. In a series of no-load solar panels fromPower test results, at 11.00 GMT+7 the highest power value was 33.25 W. The electricity generated by the pico hydro hybrid was used by the people of Wukirsari Hamlet as street lighting.

 

Key words: water wheel, hybrid power, solar panels

Article Details

Author Biographies

Slamet Hani, Institut Sains & Teknologi Akprind Yoyakarta

Jurusan Teknik Elektro

Gatot Santoso, Institut Sains & Teknologi Akprind Yoyakarta

Jurusan Teknik Elektro

Muhamad Wahyu Firmansyah, Institut Sains & Teknologi Akprind Yoyakarta

Jurusan Teknik Elektro

References

  1. Alipan, N., & Yuniarti, N. (2018). Pengembangan Pembangkit Listrik Tenaga Pico-Hydro. Edukasi Elektro, 2(2), 59–70.
  2. Barat, D. I. S. (n.d.). Rancang Bangun Kincir Air Sistem Knock Down. 88–96.
  3. Budiartawan, K., Suryawan, A. A. A., & Suarda, M. (2017). Pengaruh Variasi Sudut Sudu Segitiga Terhadap Performansi Kincir Air Piko Hidro. Jurnal Ilmiah Teknik Desain Mekanika, 6(3), 294–298. https://ojs.unud.ac.id/index.php/mekanika/article/view/37480
  4. Jasa, L. (2010). Mengatasi Krisis Energi dengan Memanfaatkan Aliran Pangkung sebagai Sumber Pembangkit Listrik Alternatif. Teknologi Elektro, 9(2), 182–190.
  5. Junaidi, A., Rinaldi, & Hendri, A. (2014). Model Fisik Kincir Air Sebagai Pembangkit Listrik. Jom FTEKNIK, 1(2), 1–9. https://media.neliti.com/media/publications/206233-model-fisik-kincir-air-sebagai-pembangki.pdf
  6. Mesin, J. T., Teknik, F., & Riau, U. (2017). Pengujian Prestasi Kincir Air Tipe Overshot Di Irigasi Kampus. 4(1), 2–6.
  7. Wibawa, U., Sc, M., Santoso, H., Dharmayana, I. G. A., & Haryono, J. M. T. (n.d.). PERANCANGAN KINCIR AIR PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) DESA BENDOSARI KECAMATAN PUJON KABUPATEN MALANG Jurusan Teknik Elektro Fakultas Teknik Universitas Brawijaya Kebutuhan akan energi listrik pada beberapa tahun terakhir di Indonesia sema. 45–58.