Main Article Content

Abstract

Introduction
Chatbots have become an integral part of digital banking, offering seamless and efficient customer service. However, their adoption in Islamic banking raises unique challenges, particularly in fostering user satisfaction and loyalty, as emotional and personal connections are often limited.
Objectives
This study analyzes the factors influencing user satisfaction and adoption of the Aisyah BSI chatbot, employing the Unified Theory of Acceptance and Use of Technology 2 (UTAUT 2). The study explores constructs such as habit, behavioral intention, and use behavior, offering insights into their roles in shaping user engagement.
Method
A quantitative approach was adopted, utilizing a structured questionnaire to collect data from 68 respondents who were users of the Aisyah BSI chatbot. Partial Least Squares Structural Equation Modeling (PLS-SEM) was employed to test the relationships among variables, including performance expectancy, effort expectancy, social influence, facilitating conditions, hedonic motivation, price value, habit, behavioral intention, and use behavior.
Results
The findings reveal that habit significantly influences behavioral intention, and behavioral intention mediates the relationship between habit and use behavior. Conversely, constructs such as performance expectancy, effort expectancy, social influence, and price value showed no significant impact on behavioral intention or use behavior. The model demonstrated a good fit, with an SRMR value of 0.094.
Implications
The study highlights the importance of fostering habitual use and strengthening behavioral intention to enhance user satisfaction with banking chatbots. These findings provide actionable recommendations for improving chatbot design and strategy, particularly in the Islamic banking sector.
Originality/Novelty
This research extends the application of the UTAUT 2 framework to a culturally specific context, contributing to the theoretical understanding of chatbot adoption in Islamic banking and offering practical insights for enhancing user engagement.

Keywords

Aisyah BSI Chatbot Bank Syariah Indonesia banking chatbot customer satisfaction Islamic bank UTAUT 2

Article Details

How to Cite
Isnaini , H. H. ., & Tulasmi, T. (2024). Analysis of factors affecting the satisfaction of using Aisyah BSI Chatbot using UTAUT 2 Theory. Journal of Islamic Economics Lariba, 10(2), 1021–1042. https://doi.org/10.20885/jielariba.vol10.iss2.art21

References

  1. Adli, M. R. S. C. D. (2023). A review of the acceptance on Learning Management System (LMS) using Unified Theory Acceptance and Use of Technology (UTAUT). Advanced International Journal of Business, Entrepreneurship and SMEs, 5(18), 22–32. https://doi.org/10.35631/AIJBES.518003

    DOI: https://doi.org/10.35631/AIJBES.518003
  2. Amalia, I. S., Suryanto, T. L. M., & Wulansari, A. (2023). Analisis faktor penerimaan aplikasi iPusnas menggunakan Unified Theory of Acceptance and Use of Technology (UTAUT) [Analisis faktor penerimaan aplikasi iPusnas menggunakan Unified Theory of Acceptance and Use of Technology (UTAUT)]. Jurnal Nasional Teknologi Dan Sistem Informasi, 9(1), 45–54. https://doi.org/10.25077/TEKNOSI.v9i1.2023.45-54

    DOI: https://doi.org/10.25077/TEKNOSI.v9i1.2023.45-54
  3. Annamalai, N., Rashid, R. A., Munir Hashmi, U., Mohamed, M., Harb Alqaryouti, M., & Eddin Sadeq, A. (2023). Using chatbots for English language learning in higher education. Computers and Education: Artificial Intelligence, 5, 100153. https://doi.org/10.1016/j.caeai.2023.100153

    DOI: https://doi.org/10.1016/j.caeai.2023.100153
  4. Arisona, N., Rofianto, W., & Putriya, A. R. (2023). UTAUT 2 (Unified Theory of Acceptance and Use of Technology-2) and trust integration model towards behavioral intention to continue, willingness to recommend, and level of use. Studies and Scientific Researches. Economics Edition, 38. https://doi.org/10.29358/sceco.v0i38.558

    DOI: https://doi.org/10.29358/sceco.v0i38.558
  5. Ay, M. H. C. (2023). User acceptance of online examination system using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. Letters in Information Technology Education (LITE), 6(1), 30–37. https://doi.org/10.17977/um010v6i12023p30-37

    DOI: https://doi.org/10.17977/um010v6i12023p30-37
  6. Azizi, S. M., Roozbahani, N., & Khatony, A. (2020). Factors affecting the acceptance of blended learning in medical education: Application of UTAUT2 model. BMC Medical Education, 20(1), Article Number 367. https://doi.org/10.1186/s12909-020-02302-2

    DOI: https://doi.org/10.1186/s12909-020-02302-2
  7. Bialkova, S. (2024). How to optimise interaction with chatbots? Key parameters emerging from actual application. International Journal of Human–Computer Interaction, 40(17), 4688–4697. https://doi.org/10.1080/10447318.2023.2219963

    DOI: https://doi.org/10.1080/10447318.2023.2219963
  8. Coimbra, R. R., Brito, C. M., & De Oliveira Sampaio, D. (2023). Hedonic and utilitarian motivations and their relationship with cultural dimensions, life satisfaction and the attributes of supermarkets: An international study on consumer behavior. Cogent Business & Management, 10(2), 2202024. https://doi.org/10.1080/23311975.2023.2202024

    DOI: https://doi.org/10.1080/23311975.2023.2202024
  9. Cortez, P. M., Ong, A. K. S., Diaz, J. F. T., German, J. D., & Singh Jagdeep, S. J. S. (2024). Analyzing Preceding factors affecting behavioral intention on communicational artificial intelligence as an educational tool. Heliyon, 10(3), e25896. https://doi.org/10.1016/j.heliyon.2024.e25896

    DOI: https://doi.org/10.1016/j.heliyon.2024.e25896
  10. Etudaiye-Muhtar, F. O., Johan, S., Lawal, R., & Sakariyahu, R. (2024). Fintech, human development and energy poverty in sub-Saharan Africa. Journal of International Financial Markets, Institutions and Money, 91, 101931. https://doi.org/10.1016/j.intfin.2023.101931

    DOI: https://doi.org/10.1016/j.intfin.2023.101931
  11. Fardiansyah, A., Peristiowati, Y., & Alamudi, M. Y. (2023). Evaluasi penerimaan pengguna sistem informasi kesehatan dengan menggunakan model Unified Theory of Acceptance and Use of Technology (UTAUT) [Evaluation of user acceptance of health information systems using the Unified Theory of Acceptance and Use of Technology (UTAUT) model]. Jurnal Penelitian Perawat Profesional, 5(2), 843–848. https://doi.org/10.37287/jppp.v5i2.1566

    DOI: https://doi.org/10.37287/jppp.v5i2.1566
  12. Fauzi, A. S. (2022). Eksplorasi kepuasan dan loyalitas pelanggan dalam layanan bank dan fintech: Studi kualitatif [An exploration of customer satisfaction and loyalty in bank and fintech services: A qualitative study]. Journal of Mandalika Literature, 3(4), 207–212. https://doi.org/10.36312/jml.v3i4.1557

    DOI: https://doi.org/10.36312/jml.v3i4.1557
  13. Firmansyah, R., Fauziah, Y., & Perwira, R. I. (2023). Analysis of factors affecting interest KAI Access application users using models Unified Theory of Acceptance and Use Of Technology 2 (UTAUT 2). Telematika, 20(2), 174–186. https://doi.org/10.31315/telematika.v20i2.8482

    DOI: https://doi.org/10.31315/telematika.v20i2.8482
  14. Følstad, A., & Brandtzaeg, P. B. (2020). Users’ experiences with chatbots: Findings from a questionnaire study. Quality and User Experience, 5(1), Article Number 3. https://doi.org/10.1007/s41233-020-00033-2

    DOI: https://doi.org/10.1007/s41233-020-00033-2
  15. Garner, S., Rintoul, A., & Hill, S. R. (2018). Value-based pricing: L’enfant terrible? PharmacoEconomics, 36(1), 5–6. https://doi.org/10.1007/s40273-017-0567-4

    DOI: https://doi.org/10.1007/s40273-017-0567-4
  16. Gerow, J. E., Ayyagari, R., Thatcher, J. B., & Roth, P. L. (2013). Can we have fun @ work? The role of intrinsic motivation for utilitarian systems. European Journal of Information Systems, 22(3), 360–380. https://doi.org/10.1057/ejis.2012.25

    DOI: https://doi.org/10.1057/ejis.2012.25
  17. Gharaibeh, M. K. (2023). Measuring student satisfaction of Microsoft Teams as an online learning platform in Jordan: An application of UTAUT2 model. Human Systems Management, 42(2), 121–130. https://doi.org/10.3233/HSM-220032

    DOI: https://doi.org/10.3233/HSM-220032
  18. Gumasing, M. J. J., Ong, A. K. S., Sy, M. A. P. C., Prasetyo, Y. T., & Persada, S. F. (2023). A machine learning ensemble approach to predicting factors affecting the intention and usage behavior towards online groceries applications in the Philippines. Heliyon, 9(10), e20644. https://doi.org/10.1016/j.heliyon.2023.e20644

    DOI: https://doi.org/10.1016/j.heliyon.2023.e20644
  19. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203

    DOI: https://doi.org/10.1108/EBR-11-2018-0203
  20. Hameed, F., Qayyum, A., & Khan, F. A. (2024). A new trend of learning and teaching: Behavioral intention towards mobile learning. Journal of Computers in Education, 11(1), 149–180. https://doi.org/10.1007/s40692-022-00252-w

    DOI: https://doi.org/10.1007/s40692-022-00252-w
  21. Harsano, I. L. D., & Suryana, L. A. (2014, October 30). Factor affecting the use behavior of social media using UTAUT 2 model. Proceedings of the First Asia-Pacific Conference on Global Business, Economics, Finance, and Social Sciences, Singapore, 1-3 August 2014. https://ppm.telkomuniversity.ac.id/factor-affecting-the-use-behavior-of-social-media-using-utaut-2-model/

  22. Haugeland, I. K. F., Følstad, A., Taylor, C., & Bjørkli, C. A. (2022). Understanding the user experience of customer service chatbots: An experimental study of chatbot interaction design. International Journal of Human-Computer Studies, 161, 102788. https://doi.org/10.1016/j.ijhcs.2022.102788

    DOI: https://doi.org/10.1016/j.ijhcs.2022.102788
  23. Hmoud, H., Shishan, F., Qasem, Z., & Bazi, S. (2023). The effect of Arabic language type on banking chatbots adoption. Heliyon, 9(10), e20686. https://doi.org/10.1016/j.heliyon.2023.e20686

    DOI: https://doi.org/10.1016/j.heliyon.2023.e20686
  24. Hoang-Tung, N., Kojima, A., & Kubota, H. (2017). Transformation from intentions to habits in travel behavior: An awareness of a mediated form of intention. Transportation Research Part F: Traffic Psychology and Behaviour, 49, 226–235. https://doi.org/10.1016/j.trf.2017.07.001

    DOI: https://doi.org/10.1016/j.trf.2017.07.001
  25. Hoo, W. C., Ching, K. Y. P., Cheng, A. Y., Saeed, K., & Shaznie, A. (2023). An examination on the factors that influence the intention to use chatbots in Malaysia. International Journal of Management and Sustainability, 12(3), 380–390. https://doi.org/10.18488/11.v12i3.3457

    DOI: https://doi.org/10.18488/11.v12i3.3457
  26. Jeon, S.-K., Kwon, M.-W., & Lee, S.-H. (2020). A study on the factors of satisfaction & WOM regarding to financial institutions internet and smartphones application on-line usage of financial customers. Journal of the Korea Convergence Society, 11(8), 183–194. https://doi.org/10.15207/JKCS.2020.11.8.183

  27. Kallel, A., Ben Dahmane Mouelhi, N., Chaouali, W., & Danks, N. P. (2024). Hey chatbot, why do you treat me like other people? The role of uniqueness neglect in human-chatbot interactions. Journal of Strategic Marketing, 32(2), 170–186. https://doi.org/10.1080/0965254X.2023.2175020

    DOI: https://doi.org/10.1080/0965254X.2023.2175020
  28. Korea Institute of Design Research Society, & Kim, B. T. (2023). A study on data visualization UX design to improve fintech service satisfaction. Korea Institute of Design Research Society, 8(1), 573–582. https://doi.org/10.46248/kidrs.2023.1.573

    DOI: https://doi.org/10.46248/kidrs.2023.1.573
  29. Kuhail, M. A., Thomas, J., Alramlawi, S., Shah, S. J. H., & Thornquist, E. (2022). Interacting with a chatbot-based advising system: Understanding the effect of chatbot personality and user gender on behavior. Informatics, 9(4), 81. https://doi.org/10.3390/informatics9040081

    DOI: https://doi.org/10.3390/informatics9040081
  30. Kwangsawad, A., & Jattamart, A. (2022). Overcoming customer innovation resistance to the sustainable adoption of chatbot services: A community-enterprise perspective in Thailand. Journal of Innovation & Knowledge, 7(3), 100211. https://doi.org/10.1016/j.jik.2022.100211

    DOI: https://doi.org/10.1016/j.jik.2022.100211
  31. Kwateng, K. O., Atiemo, K. A. O., & Appiah, C. (2019). Acceptance and use of mobile banking: An application of UTAUT2. Journal of Enterprise Information Management, 32(1), 118–151. https://www.emerald.com/insight/content/doi/10.1108/jeim-03-2018-0055/full/html

    DOI: https://doi.org/10.1108/JEIM-03-2018-0055
  32. Mahmud, A, Susilowati, N, Sari, &, & N, P. (2021). Investigating factor of behaviour intention and usage of SISKEUDES in Central Java Indonesia. Journal of Management Information and Decision Sciences, 25(1S), 1–13. https://www.abacademies.org/abstract/investigating-factor-of-behaviour-intention-and-usage-of-siskeudes-in-central-java-indonesia-13373.html

  33. Mogaji, E., Balakrishnan, J., Nwoba, A. C., & Nguyen, N. P. (2021). Emerging-market consumers’ interactions with banking chatbots. Telematics and Informatics, 65, 101711. https://doi.org/10.1016/j.tele.2021.101711

    DOI: https://doi.org/10.1016/j.tele.2021.101711
  34. Nikolopoulou, K., Gialamas, V., & Lavidas, K. (2020). Acceptance of mobile phone by university students for their studies: An investigation applying UTAUT2 model. Education and Information Technologies, 25(5), 4139–4155. https://doi.org/10.1007/s10639-020-10157-9

    DOI: https://doi.org/10.1007/s10639-020-10157-9
  35. Ong, M. H. A., Yusri, M. Y., & Ibrahim, N. S. (2023). Use and behavioural intention using digital payment systems among rural residents: Extending the UTAUT-2 model. Technology in Society, 74, 102305. https://doi.org/10.1016/j.techsoc.2023.102305

    DOI: https://doi.org/10.1016/j.techsoc.2023.102305
  36. Parhamnia, F. (2022). Investigating mobile acceptance in academic library services based on Unified Theory of Acceptance and Use of Technology Model (UTAUT-2). The Journal of Academic Librarianship, 48(5), 102570. https://doi.org/10.1016/j.acalib.2022.102570

    DOI: https://doi.org/10.1016/j.acalib.2022.102570
  37. Petrou, P., & Talias, M. A. (2016). Navigating through the maze of pricing and affordability of branded pharmaceuticals in the midst of the financial crisis: A comparative study among five European recession countries, from a Cyprus perspective. Journal of Pharmaceutical Policy and Practice, 9(1), Article Number 8. https://doi.org/10.1186/s40545-016-0057-7

    DOI: https://doi.org/10.1186/s40545-016-0057-7
  38. Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research, 8(2), 23–74.

  39. Sembiring, E. R., Pujangkoro, S. H., & Wibowo, R. P. (2023). Consumer behavior in adopting Useetv Go Streaming & Video-On-Demand services using Unified Theory Of Acceptance and Use Of Technology 2 (UTAUT2). Jurnal Pamator : Jurnal Ilmiah Universitas Trunojoyo, 16(2), 386–404. https://doi.org/10.21107/pamator.v16i2.19993

    DOI: https://doi.org/10.21107/pamator.v16i2.19993
  40. Shih, Y.-H., & Liu, M. (2007). The importance of emotional usability. Journal of Educational Technology Systems, 36(2), 203–218. https://doi.org/10.2190/ET.36.2.h

    DOI: https://doi.org/10.2190/ET.36.2.h
  41. Sidlauskiene, J., Joye, Y., & Auruskeviciene, V. (2023). AI-based chatbots in conversational commerce and their effects on product and price perceptions. Electronic Markets, 33(1), Article Number 24. https://doi.org/10.1007/s12525-023-00633-8

    DOI: https://doi.org/10.1007/s12525-023-00633-8
  42. Tamilmani, K., Rana, N. P., & Dwivedi, Y. K. (2019). Use of ‘habit’ is not a habit in understanding individual technology adoption: A review of UTAUT2 based empirical studies. In A. Elbanna, Y. K. Dwivedi, D. Bunker, & D. Wastell (Eds.), Smart Working, Living and Organising (pp. 277–294). Springer International Publishing. https://doi.org/10.1007/978-3-030-04315-5_19

    DOI: https://doi.org/10.1007/978-3-030-04315-5_19
  43. Thich, P. D. (2021). A study on behavior intention to adopt mobile banking apps: International Journal of E-Services and Mobile Applications, 13(2), 60–72. https://doi.org/10.4018/IJESMA.2021040104

    DOI: https://doi.org/10.4018/IJESMA.2021040104
  44. Venkatesh, Thong, & Xu. (2012). Consumer acceptance and use of information technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. https://doi.org/10.2307/41410412

    DOI: https://doi.org/10.2307/41410412
  45. Walle, A. D., Jemere, A. T., Tilahun, B., Endehabtu, B. F., Wubante, S. M., Melaku, M. S., Tegegne, M. D., & Gashu, K. D. (2023). Intention to use wearable health devices and its predictors among diabetes mellitus patients in Amhara region referral hospitals, Ethiopia: Using modified UTAUT-2 model. Informatics in Medicine Unlocked, 36, 101157. https://doi.org/10.1016/j.imu.2022.101157

    DOI: https://doi.org/10.1016/j.imu.2022.101157
  46. Zacharis, G., & Nikolopoulou, K. (2022). Factors predicting University students’ behavioral intention to use eLearning platforms in the post-pandemic normal: An UTAUT2 approach with ‘Learning Value.’ Education and Information Technologies, 27(9), 12065–12082. https://doi.org/10.1007/s10639-022-11116-2

    DOI: https://doi.org/10.1007/s10639-022-11116-2