Main Article Content

Abstract

Background: Diabetes mellitus is a metabolic disorder characterized by hyperglycemia. Metformin is the first-line therapy for type-2 diabetes mellitus. The combination of synthetic drugs with herbs was reported to be superior and popular compared to monotherapy. However, drug-herb interactions can have both beneficial and detrimental effects.
Objective: This review aimed to identify the interactions that occur between the antidiabetic drug metformin and herbs.
Methods: A literature search was done through ScienceDirect, ResearchGate, Pharmaceutics, and Genes by MDPI databases using the keywords metformin, antidiabetic, herb-drug, interaction, pharmacology, combination, pharmacokinetics, and pharmacodynamics.
Results: The combination of metformin and such herbs as Korean ginseng (Panax ginseng), Lonicera japonica, Houttuynia cordata, mulberry (Morus alba), banana (Musa sapientum), Momordica charantia, coconut (Cocos nucifera), and Scutellaria baicalensis showed pharmacokinetic interactions in the form of increasing plasma metformin uptake mediated by MATE1 inhibition and increased OCT1, as well as hOCT2 inhibition which caused decreased metformin uptake in the kidneys. The pharmacodynamic interactions showed a direct effect, both additive and synergistic effects, in reducing blood glucose levels.
Conclusion: Consuming metformin with herbs shows the potential for drug interactions in terms of both pharmacokinetics and pharmacodynamics.
Keywords: pharmacokinetic, pharmacodynamic, herb-drug, metformin


Intisari
Latar belakang: Diabetes melitus yaitu gangguan metabolisme yang ditandai dengan hiperglikemia. Metformin merupakan lini pertama pengobatan DM tipe 2. Kombinasi obat sintetis dengan herbal telah dilaporkan menjadi lebih unggul dan populer dibandingkan pengobatan monoterapi saja. Penggunaan obat sintetis dengan herbal dapat memicu interaksi obat yang dapat memberikan efek menguntungkan ataupun merugikan.
Tujuan: Review ini bertujuan untuk mengetahui interaksi yang terjadi antara obat antidiabetes metformin dengan herbal.
Metode: Penelusuran pustaka melalui database Sciencedirect, Researchgate, Pharmaceutics, dan Genes MDPI dengan penggunaan kata kunci seperti metformin, antidiabetic, herb-drug, interaction, pharmacology, combination, pharmacokinetic, dan pharmacodynamic.
Hasil: Kombinasi obat metformin dengan herbal seperti ginseng Korea (Panax ginseng), kamperfuli (Lonicera japonica), amis-amisan (Houttuynia cordata), murbei (Morus alba), pisang (Musa sapientum), pare (Momordica charantia), kelapa (Cocos nucifera), dan kopiah Cina (Scutellaria baicalensis) menunjukkan interaksi farmakokinetik berupa peningkatan penyerapan metformin dalam plasma yang diduga dimediasi oleh penghambatan MATE1 dan peningkatan OCT1, serta penghambatan hOCT2 yang menyebabkan penurunan penyerapan metformin di ginjal. Adapun interaksi farmakodinamiknya menunjukkan efek yang searah baik aditif maupun sinergis dalam penurunan kadar glukosa darah.
Kesimpulan: Konsumsi metformin dengan herbal menunjukkan adanya potensi interaksi obat baik secara farmakokinetik ataupun farmakodinamik.
Kata kunci: farmakokinetik, farmakodinamik, herbal-obat, metformin

Keywords

pharmacokinetic pharmacodynamic herb-drug metformin

Article Details

Author Biography

Ating Cicih, Bhakti Kencana University

Mahasiswa Prodi S1 Fakultas Farmasi di Universitas Bhakti Kencana

References

  1. Abouzekry, S. S., Badawy, M. T., Ezzelarab, N. M., & Abdellatif, A. (2021). Phytotherapy for diabetes mellitus; A review of Middle Eastern and North African folk medicinal plants. J Herbmed Pharmacol, 10(1), 1-13. https://doi.org/10.34172/jhp.2021.01
  2. Adegoke, G. A., Onasanwo, S. A., Eyarefe, O. D., & Olaleye, S. B. (2016). Ameliorative effects of Musa sapientum peel extract on acetic acid-induced colitis in rats. The Journal of Basic & Applied Zoology, 77, 49-55. https://doi.org/https://doi.org/10.1016/j.jobaz.2016.06.004
  3. Choi, J., Kim, K.-J., Koh, E.-J., & Lee, B.-Y. (2018). Gelidium elegans Extract Ameliorates Type 2 Diabetes via Regulation of MAPK and PI3K/Akt Signaling. Nutrients, 10(1), 51. https://doi.org/10.3390/nu10010051
  4. Cortez-Navarrete, M., Martínez-Abundis, E., Pérez-Rubio, K. G., González-Ortiz, M., & Méndez-Del Villar, M. (2018). Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus. J Med Food, 21(7), 672-677. https://doi.org/10.1089/jmf.2017.0114
  5. Cusinato, D. A. C., Martinez, E. Z., Cintra, M. T. C., Filgueira, G. C. O., Berretta, A. A., Lanchote, V. L., & Coelho, E. B. (2019). Evaluation of potential herbal-drug interactions of a standardized propolis extract (EPP-AF®) using an in vivo cocktail approach. J Ethnopharmacol, 245, 112174. https://doi.org/10.1016/j.jep.2019.112174
  6. da Silva, L. A., Pezzini, B. R., & Soares, L. (2015). Spectrophotometric Determination of The Total Flavonoid Content in Ocimum basilicum L. (Lamiaceae) Leaves. Pharmacogn Mag, 11(41), 96-101. https://doi.org/10.4103/0973-1296.149721
  7. Dai, S., Hong, Y., Xu, J., Lin, Y., Si, Q., & Gu, X. (2018). Ginsenoside Rb2 promotes glucose metabolism and attenuates fat accumulation via AKT-dependent mechanisms. Biomed Pharmacother, 100, 93-100. https://doi.org/10.1016/j.biopha.2018.01.111
  8. Darvhekar, V., Tripathi, A. S., Jyotishi, S. G., Mazumder, P. M., & Shelke, P. G. (2016). Influence of Musa sapientum L. on Pharmacokinetic of Metformin in Diabetic Gastroparesis Chin. J. Integr. Med, 22, 783–788. https://doi.org/https://doi.org/10.1007/s11655-016-2520-3
  9. Dujic, T., Causevic, A., Bego, T., Malenica, M., Velija-Asimi, Z., Pearson, E. R., & Semiz, S. (2016). Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med, 33(4), 511-514. https://doi.org/10.1111/dme.13040
  10. Elango, H., Ponnusankar, S., & Sundaram, S. (2015). Assessment of Pharmacodynamic and Pharmacokinetic Interaction of Aqueous Extract of Cassia auriculata L. and Metformin in Rats. Pharmacogn Mag, 11(Suppl 3), S423-426. https://doi.org/10.4103/0973-1296.168986
  11. Fan, W., Huang, Y., Zheng, H., Li, S., Li, Z., Yuan, L., Cheng, X., He, C., & Sun, J. (2020). Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother, 132, 110915. https://doi.org/10.1016/j.biopha.2020.110915
  12. Fang, Y., & Wang, H.-y. (2017). Protective Effects and Underlying Mechanisms of Compound Herba Houttuyniae in db/db Mice. Chinese Herbal Medicines, 9, 381-387. https://doi.org/10.1016/S1674-6384(17)60119-9
  13. Gupta, R. C., Chang, D., Nammi, S., Bensoussan, A., Bilinski, K., & Roufogalis, B. D. (2017). Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetology & metabolic syndrome, 9, 59-59. https://doi.org/10.1186/s13098-017-0254-9
  14. Han, J. M., Kim, M. H., Choi, Y. Y., Lee, H., Hong, J., & Yang, W. M. (2015). Effects of Lonicera japonica Thunb. on Type 2 Diabetes via PPAR-γ Activation in Rats. Phytother Res, 29(10), 1616-1621. https://doi.org/10.1002/ptr.5413
  15. Han, K., Bose, S., Wang, J. H., Lim, S. K., Chin, Y. W., Kim, Y. M., Choi, H. S., & Kim, H. (2017). In vivo therapeutic effect of combination treatment with metformin and Scutellaria baicalensis on maintaining bile acid homeostasis. PLoS One, 12(9), e0182467. https://doi.org/10.1371/journal.pone.0182467
  16. Han, S. Y., Chae, H. S., You, B. H., Chin, Y. W., Kim, H., Choi, H. S., & Choi, Y. H. (2019). Lonicera japonica extract increases metformin distribution in the liver without change of systemic exposed metformin in rats. J Ethnopharmacol, 238, 111892. https://doi.org/10.1016/j.jep.2019.111892
  17. Huh, H. W., Na, Y.-G., Bang, K.-H., Kim, S.-J., Kim, M., Kim, K.-T., Kang, J.-S., Kim, Y.-H., Baek, J.-S., Lee, H.-K., & Cho, C.-W. (2020). Extended Intake of Mulberry Leaf Extract Delayed Metformin Elimination via Inhibiting the Organic Cation Transporter 2. Pharmaceutics, 12(1), 49. https://doi.org/10.3390/pharmaceutics12010049
  18. IDF. (2019). IDF Diabetes Atlas Ninth edition 2019 Ninth ed., International Diabetes Federation
  19. Islam, M., Islam, M. S., Zannah, S., Sadik, M., & Rashid, M. (2018). Momordica charantia (Bitter melon) in Combination with Metformin Potentiates Hypoglycemic and Hypolipidemic Effects in Alloxan-induced Diabetic Rats. Bangladesh Pharmaceutical Journal, 21, 109. https://doi.org/10.3329/bpj.v21i2.37921
  20. Jin, S., Lee, S., Jeon, J. H., Kim, H., Choi, M. K., & Song, I. S. (2019). Enhanced Intestinal Permeability and Plasma Concentration of Metformin in Rats by the Repeated Administration of Red Ginseng Extract. Pharmaceutics, 11(4). https://doi.org/10.3390/pharmaceutics11040189
  21. Jovanovski, E., Smircic-Duvnjak, L., Komishon, A., Au-Yeung, F. R., Sievenpiper, J. L., Zurbau, A., Jenkins, A. L., Sung, M.-K., Josse, R., Li, D., & Vuksan, V. (2021). Effect of coadministration of enriched Korean Red Ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L) on cardiometabolic outcomes in type-2 diabetes: A randomized controlled trial. Journal of ginseng research, 45(5), 546-554. https://doi.org/10.1016/j.jgr.2019.11.005
  22. Kaur, G., Sankrityayan, H., Dixit, D., & Jadhav, P. (2020). Cocos nucifera and metformin combination for modulation of diabetic symptoms in streptozotocin induced diabetic rats. J Ayurveda Integr Med, 11(1), 3-9. https://doi.org/10.1016/j.jaim.2017.02.006
  23. Kemenkes_RI. (2019). Pedoman Pelayanan Kefarmasian pada Diabetes Melitus Jakarta: Kemenkes RI
  24. Kennedy, M. S. N., & Masharani, U. (2018). Basic & Clinical Pharmacology Fourteenth ed., New York: McGraw-Hill Education.760
  25. Kim, S. K., Jung, J., Jung, J. H., Yoon, N., Kang, S. S., Roh, G. S., & Hahm, J. R. (2020). Hypoglycemic efficacy and safety of Momordica charantia (bitter melon) in patients with type 2 diabetes mellitus. Complement Ther Med, 52, 102524. https://doi.org/10.1016/j.ctim.2020.102524
  26. Liang, X., Chien, H. C., Yee, S. W., Giacomini, M. M., Chen, E. C., Piao, M., Hao, J., Twelves, J., Lepist, E. I., Ray, A. S., & Giacomini, K. M. (2015). Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3). Mol Pharm, 12(12), 4301-4310. https://doi.org/10.1021/acs.molpharmaceut.5b00501
  27. Liu, Z., Cheng, Z., He, Q., Lin, B., Gao, P., Li, L., Liu, Q., & Song, S. (2016). Secondary metabolites from the flower buds of Lonicera japonica and their in vitro anti-diabetic activities. Fitoterapia, 110, 44-51. https://doi.org/10.1016/j.fitote.2016.02.011
  28. Men, L.-H., Pi, Z.-F., Hu, M.-X., Liu, S., Liu, Z.-Q., Song, F.-R., Chen, X., & Liu, Z.-Y. (2021). Serum Metabolomics Coupled with Network Pharmacology Strategy to Explore Therapeutic Effects of Scutellaria Baicalensis Georgi on Diabetic Nephropathy. Chinese Journal of Analytical Chemistry, 49(1), e21001-e21013. https://doi.org/https://doi.org/10.1016/S1872-2040(20)60075-5
  29. Meng, F., Su, X., Li, W., & Zheng, Y. (2017). Ginsenoside Rb3 strengthens the hypoglycemic effect through AMPK for inhibition of hepatic gluconeogenesis. Exp Ther Med, 13(5), 2551-2557. https://doi.org/10.3892/etm.2017.4280
  30. Mouly, S., Lloret-Linares, C., Sellier, P. O., Sene, D., & Bergmann, J. F. (2017). Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and Saint-John's Wort? Pharmacol Res, 118, 82-92. https://doi.org/10.1016/j.phrs.2016.09.038
  31. Murthy, S. S. N., & Felicia, C. (2015). Antidiabetic Activity of Musa sapientum Fruit Peel on STZ Induced Diabetic Rats. Int J Pharm Bio Sci 6(1), 537-543.
  32. Nam, S. J., Han, Y. J., Lee, W., Kang, B., Choi, M. K., Han, Y. H., & Song, I. S. (2018). Effect of Red Ginseng Extract on the Pharmacokinetics and Efficacy of Metformin in Streptozotocin-Induced Diabetic Rats. Pharmaceutics, 10(3). https://doi.org/10.3390/pharmaceutics10030080
  33. Patcharee, P., Wilawan, P., & Chusri, T. (2017). Anti-hyperglycemic and Anti-hyperlipidemic Effects of Extract from Houttuynia cordata Thumb. in Streptozotocin-Induced Diabetic Rats. Pharmacognosy Journal, 9(3). /files/PJ-9-3/10.5530pj.2017.3.65
  34. Perkeni. (2019). Pedoman pengelolaan dan pencegahan diabetes melitus tipe 2 dewasa di Indonesia 2019 Perkumpulan Endokrinol. Indonesia.1–117
  35. Poonam, T., Prem Prakash, G., & Vijay Kumar, L. (2013). Interaction of Momordica Charantia with Metformin in Diabetic Rats. Am. J. Pharmacol. Toxicol 8, 102–106. https://doi.org/ https://doi.org/10.3844/ajptsp.2013.102.106
  36. Pramesthi, A., Ardana, M., & Indriyanti, N. (2019). Drug-Herb Interaction between Metformin and Momordica charantia in Diabetic Mice. Molecular and Cellular Biomedical Sciences, 3, 81. https://doi.org/10.21705/mcbs.v3i2.47
  37. Rajkapoor, B., & Pakkir Maideen, N. M. (2018). Pharmacologically relevant drug interactions of sulfonylurea antidiabetics with common herbs. Journal of HerbMed Pharmacology, 7. https://doi.org/10.15171/jhp.2018.32
  38. Ramachandran, A. (2014). Know the signs and symptoms of diabetes. The Indian journal of medical research, 140(5), 579-581. https://pubmed.ncbi.nlm.nih.gov/25579136
  39. Reddy, A. J., Dubey, A. K., Handu, S., Sachin, M., Mediratta, P. K., & Mushtaq, Q. A. (2017). Effects of Musa sapientum stem extract on experimental models of anxiety. Avicenna journal of phytomedicine, 7(6), 495-501. https://pubmed.ncbi.nlm.nih.gov/29299432
  40. Sease, J., & Shealy, K. (2016). Pharmacotherapy Principles & Practice Fourth ed., New York: McGraw-Hill Education Companies.651
  41. Shin, N. R., Gu, N., Choi, H. S., & Kim, H. (2020). Combined effects of Scutellaria baicalensis with metformin on glucose tolerance of patients with type 2 diabetes via gut microbiota modulation. Am J Physiol Endocrinol Metab, 318(1), E52-e61. https://doi.org/10.1152/ajpendo.00221.2019
  42. Singla, R. K., & Dubey, A. K. (2019). Phytochemical Profiling, GC-MS Analysis and α-Amylase Inhibitory Potential of Ethanolic Extract of Cocos nucifera Linn. Endocarp. Endocr Metab Immune Disord Drug Targets, 19(4), 419-442. https://doi.org/10.2174/1871530319666181128100206
  43. Thaipitakwong, T., Supasyndh, O., Rasmi, Y., & Aramwit, P. (2020). A randomized controlled study of dose-finding, efficacy, and safety of mulberry leaves on glycemic profiles in obese persons with borderline diabetes. Complement Ther Med, 49, 102292. https://doi.org/10.1016/j.ctim.2019.102292
  44. Trujillo, J., & Haines, S. (2020). Pharmacotherapy A Pathophysiologic Approach 11 ed., New York: Mc Graw-Hill.3573
  45. van den Berg, J. P., Vereecke, H. E., Proost, J. H., Eleveld, D. J., Wietasch, J. K., Absalom, A. R., & Struys, M. M. (2017). Pharmacokinetic and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic drug administration. Br J Anaesth, 118(1), 44-57. https://doi.org/10.1093/bja/aew312
  46. Vijaya, K., Sunitha, S., Khan, P. A. H., Sandhya, P., Sujatha, D., & Reddy, G. G. (2014). Synergistic Antihyperglycemic, Antihyperlipidemic and Antioxidant Effects of Momordica Charantia and Metformin in Streptozotocin Induced Diabetic Rats. World J. Pharm. Res, 3, 1890–1901.
  47. Wang, D., Zhao, X., & Liu, Y. (2017). Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int J Biol Macromol, 102, 396-404. https://doi.org/10.1016/j.ijbiomac.2017.04.056
  48. Wang, J.-H., Bose, S., Lim, S.-K., Ansari, A., Chin, Y.-W., Choi, H. S., & Kim, H. (2017). Houttuynia cordata Facilitates Metformin on Ameliorating Insulin Resistance Associated with Gut Microbiota Alteration in OLETF Rats. Genes, 8(10), 239. https://doi.org/10.3390/genes8100239
  49. Wang, Q., Wu, X., Shi, F., & Liu, Y. (2019). Comparison of antidiabetic effects of saponins and polysaccharides from Momordica charantia L. in STZ-induced type 2 diabetic mice. Biomedicine & Pharmacotherapy, 109, 744-750. https://doi.org/10.1016/j.biopha.2018.09.098
  50. Xia, Y.-T., Chan, G. K.-L., Wang, H.-Y., Dong, T. T.-X., Duan, R., Hu, W.-H., Qin, Q.-W., Wang, W.-X., & Tsim, K. W.-K. (2020). The anti-bacterial effects of aerial parts of Scutellaria baicalensis [21_Publication in refereed journal]. Potential application as an additive in aquaculture feedings, 526. https://doi.org/10.1016/j.aquaculture.2020.735418
  51. Xiao, N., Lou, M. D., Lu, Y. T., Yang, L. L., Liu, Q., Liu, B., Qi, L. W., & Li, P. (2017). Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinate-associated HIF-1α induction in HFD-fed mice. Diabetologia, 60(6), 1084-1093. https://doi.org/10.1007/s00125-017-4238-y
  52. Yim, S., You, B. H., Chae, H. S., Chin, Y. W., Kim, H., Choi, H. S., & Choi, Y. H. (2017). Multidrug and toxin extrusion protein 1-mediated interaction of metformin and Scutellariae radix in rats. Xenobiotica, 47(11), 998-1007. https://doi.org/10.1080/00498254.2016.1257836
  53. Yoo, J. H., Yim, S. V., & Lee, B. C. (2018). Study of Pharmacodynamic and Pharmacokinetic Interaction of Bojungikki-Tang with Aspirin in Healthy Subjects and Ischemic Stroke Patients. Evidence-based Complementary and Alternative Medicine. https://doi.org/ https://doi.org/10.1155/2018/9727240
  54. You, B. H., Chin, Y. W., Kim, H., Choi, H. S., & Choi, Y. H. (2018). Houttuynia cordata extract increased systemic exposure and liver concentrations of metformin through OCTs and MATEs in rats. Phytother Res, 32(6), 1004-1013. https://doi.org/10.1002/ptr.6036
  55. Zhang, L., Su, S., Zhu, Y., Guo, J., Guo, S., Qian, D., Ouyang, Z., & Duan, J. A. (2019). Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and TGF-β/Smads signaling pathway. Biomed Pharmacother, 112, 108675. https://doi.org/10.1016/j.biopha.2019.108675
  56. Zhang, X. J., Liu, S., Xing, J. P., Liu, Z. Q., & Song, F. R. (2018). Effect of type 2 diabetes mellitus on flavonoid pharmacokinetics and tissue distribution after oral administration of Radix Scutellaria extract in rats. Chin J Nat Med, 16(6), 418-427. https://doi.org/10.1016/s1875-5364(18)30075-x