Main Article Content

Abstract

Background: Plants of the Zingiberaceae family are widely grown and cultivated in Indonesia. One of the uses of these plants by the community is as traditional medicine. The part of the plant that is often used as a traditional medicine in the Zingiberaceae family is the rhizome. The potential of Zingiberaceae as a drug is closely related to its pharmacological activity and the active compounds it contains. Essential oils are materials contained in the Zingiberaceae family and have the potential to be active compounds.
Objective: This review article was compiled to study the compounds contained in the essential oil of the Zingiberaceae family and the biological activities of these compounds.
Method: Article reviews were conducted using an electronic literature search method through journal portals such as Google Scholar, Science Direct, and Research Gate using keywords, namely identification of the chemical content of essential oils, rhizomes, Zingiberaceae, biological activity, and pharmacological activity.
Results: This study found that the main terpenoid compounds in the essential oil from the rhizome of the Zingiberaceae family are α-cineol, β-pinene, β-sesquiphellandrene, and α-Zingiberene. Each of them has a different pharmacological activity, such as antibacterial, antiviral, or cytotoxic.
Conclusion: The essential oil from the rhizomes of the Zingiberaceae family has great potential to be developed as a medicinal ingredient with antibacterial, antiviral, and anticancer properties. Before being used as a drug, it is necessary to carry out further research on toxicity, biopharmaceutical, and clinical research.
Keywords: Essential oil, rhizome, Zingiberaceae, terpenoid


Intisari
Latar belakang: Tumbuhan suku Zingiberaceae banyak tumbuh dan dibudidayakan di Indonesia. Salah satu pemanfaatan tumbuhan tersebut oleh masyarakat adalah sebagai obat tradisional. Bagian tumbuhan yang sering dimanfaatkan sebagai obat tradisioal dari suku Zingiberaceae adalah rimpang. Potensi suku Zingiberaceae sebagai obat berhubungan erat dengan aktivitas farmakologi dan senyawa aktif yang dikandungnya. Minyak atsiri merupakan zat yang terkandung dalam suku Zingiberaceae dan berpotensi sebagai senyawa aktif.
Tujuan: Review artikel ini disusun untuk mengkaji senyawa yang terkandung pada minyak atsiri rimpang tanaman suku Zingiberaceae dan aktivitas biologi dari senyawa tersebut.
Metode: Review artikel dilakukan menggunakan metode pencarian literatur secara elektronik melalui portal jurnal seperti Google Scholar, Science Direct, dan Research Gate dengan menggunakan kata kunci yaitu identifikasi kandungan kimia minyak atsiri, rimpang, Zingiberaceae, aktivitas biologi, aktivitas farmakologi.
Hasil: Senyawa terpenoid yang banyak terkandung dalam minyak atsiri rimpang suku Zingiberaceae, yaitu 1,8-cineol, α-pinene, β–pinene, β-sesquiphellandrene dan α-Zingiberene. Masing-masing memiliki aktivitas farmakologi berbeda seperti antibakteri, antivirus, dan sitotoksik.
Kesimpulan: Minyak atsiri dari rimpang suku Zingiberaceae berpotensi besar untuk dikembangkan sebagai bahan obat seperti antibakteri, antivirus dan antikanker. Sebelum digunakan sebagai obat ,perlu dilakukan penelitian lebih lanjut mengenai toksisitas, biofarmasetika, dan penelitian secara klinis.
Kata kunci: Minyak atsiri; rimpang; Zingiberaceae, terpenoid

Keywords

essential oil rhizome Zingiberaceae terpenoid

Article Details

References

  1. Al-Dhahli A.S., Al-Hassani F.A., Alarjani K.M., Hany M.Y., Al Lawati W.M., Azmi S.N.H., & Khan S.A. (2020). Essential Oil From The Rhizomes of The Saudi and Chinese Zingiber officinale Cultivars: Comparison of Chemical Composition, Antibacterial and Molecular Docking Studies. Journal King Saud University-Science, 32, 3343–3350. https://doi.org/10.1016/j.jksus.2020.09.020
  2. AlShebly M.M., AlQahtani F.S., Govindarajan M., Gopinath K., Vijayan P., & Benelli G. (2017). Toxicity of Ar-curcumene and Epi-β-bisabolol From Hedychium larsenii (Zingiberaceae) Essential Oil On Malaria, Chikungunya and Japanese Encephalitis Mosquito Vectors. Ecotoxicology and Environmental Safety, 137, 149–157. https://doi.org/10.1016/j.ecoenv.2016.11.028
  3. Balaji S., & Chempakam B. (2018). Anti-bacterial Effect of Essential Oils Extracted from Selected Spices of Zingiberaceae. The Natural Products Journal, 8(1), 70–76. https://doi.org/10.2174/2210315507666171004161356
  4. Donadu M.G., Trong Le N., Viet Ho D., Quoc Doan T., Tuan Le A., Raal A., Usai M., Marchetti M., Sanna G., Madeddu S., Rappelli P., Diaz N., Molicotti P., Carta A., Piras S., Usai D., Thi Nguyen H., Cappuccinelli P., & Zanetti S. (2020). Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics, 9(334), 1–16. https://doi.org/10.3390/antibiotics9060334
  5. Gevú K. V., Lima H.R.P., Neves I.A., Mello É.O., Taveira G.B., Carvalho L.P., Carvalho M.G., Gomes V.M., Melo E.J.T., & Da Cunha M. (2019). Chemical Composition and Anti-Candida and Anti- Trypanosoma cruzi Activities of Essential Oils from the Rhizomes and Leaves of Brazilian Species of Renealmia L. fil. Records of Natural Products, 13(3), 268–280. https://doi.org/10.25135/rnp.105.18.08.125
  6. Guzman L., Nerio L.S., Venturini W., Macias J.P.J., Donoso W., & Forero-Doria O. (2020). Antiplatelet and Antibacterial Activities of Essential Oils Obtained From Rhizomes and Leaves of Hedychium coronarium J. Koening. Anais da Academia Brasileira de Ciências, 92(2), 1–10. https://doi.org/10.1590/0001-3765202020190615
  7. Heinrich M., Williamson E.M., Gibbons S., Barnes J., & Prieto-Garcia J. (2012). Fundamentals of Pharmacognosy and Phytotherapy, 2nd ed. Elsevier Health Sciences, London.
  8. Ivanov M., Kannan A., Stojković D.S., Glamočlija J., Calhelha R.C., Ferreira I.C.F.R., Sanglard D., & Soković M. (2021). Camphor and Eucalyptol—Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. International Journal of Molecular Sciences, 22(483), 1–14. https://doi.org/10.3390/ijms22020483
  9. Joshi A., Krishnan G.S., & Kaushik V. (2020). Molecular Docking and Simulation Investigation: Effect Of Beta-Sesquiphellandrene With Ionic Integration On SARS-CoV2 and SFTS Viruses. Journal of Genetetic Engineering and Biotechnology, 18(78), 1–8. https://doi.org/10.1186/s43141-020-00095-x
  10. Kurup R., Thomas V.P., Jose J., Dan M., Sabu M., & Baby S. (2018). Chemical Composition of Rhizome Essential Oils of Amomum agastyamalayanum and Amomum newmanii from South India. Journal Essential Oil Bearing Plants, 21(3), 803–810. https://doi.org/10.1080/0972060X.2018.1500182
  11. Le T.B., Beaufay C., Nghiem D.T., Pham T.A., Mingeot-Leclercq M.-P., & Quetin-Leclercq J. (2019). Evaluation of the Anti-Trypanosomal Activity of Vietnamese Essential Oils, with Emphasis on Curcuma longa L. and Its Components. Molecules, 24, 1–13. https://doi.org/10.3390/molecules24061158
  12. Merghni A., Noumi E., Hadded O., Dridi N., Panwar H., Ceylan O., Mastouri M., & Snoussi M. (2018). Assessment of The Antibiofilm and Antiquorum Sensing Activities of Eucalyptus globulus Essential Oil and Its Main Component 1,8-Cineole Against Methicillin-Resistant Staphylococcus aureus Strains. Microbial Pathogenesis, 1–24. https://doi.org/10.1016/j.micpath.2018.03.006
  13. Oktavianawati I., Kurniati H.I., Maghfiroh K., Hanifah N., Handayani W., & Winata I.N.A. (2018). Essential Oils from Rhizhomes of Five Zingiberaceae Species in Meru Betiri National Park, in: AIP Conference Proceedings. pp. 1–8. https://doi.org/10.1063/1.5065034
  14. Padalia R.C., Verma R.S., Sundaresan V., & Chanotiya C.S. (2010). Chemical Diversity in the Genus Alpinia (Zingiberaceae): Comparative Composition of Four Alpinia Species Grown in Northern India. Chemistry & Biodiversity, 7, 2076–2087. https://doi.org/10.1002/cbdv.201000013
  15. Pintatum A., Laphookhieo S., Logie E., Berghe W. Vanden, & Maneerat W. (2020). Chemical Composition of Essential Oils from Different Parts of Zingiber kerrii Craib and Their Antibacterial, Antioxidant, and Tyrosinase Inhibitory Activities. Biomolecules, 10(228), 1–13. https://doi.org/10.3390/biom10020228
  16. Rahayu S.N. (2019). Isolasi Minyak Atsiri dari Temulawak (Curcuma xanthorriza) dan Identifikasi Bioaktif Menggunakan GCMS. Institut Kesehatan Helvetia.
  17. Sasidharan I., Venugopal V.V., & Menon A.N. (2012). Essential Oil Composition of Two Unique Ginger ( Zingiber officinale Roscoe) Cultivars from Sikkim. Natural Product Research, 26(19), 1759–1764. https://doi.org/10.1080/14786419.2011.571215
  18. Sirat H.M., Basar N., & Jani N.A. (2011). Chemical Compositions of The Rhizome Oils of Two Alpinia Species of Malaysia. Natural Product Research, 25(10), 982–986. https://doi.org/10.1080/14786419.2010.529079
  19. Tisserand R.,& Young R. (2014). Essential Oil Composition, 2nd ed, Essential Oil Safety. Robert Tisserand and Rodney Young. https://doi.org/10.1016/b978-0-443-06241-4.00002-3
  20. Togar B., Türkez H., Stefano A.D., Tatar A., & Cetin D. (2015). Zingiberene attenuates hydrogen peroxide-induced toxicity in neuronal cells. Human & Experinmental Toxicology, 1-10. https://doi.org/10.1177/0960327114538987
  21. Tyagi A.K., Prasad S., Yuan W., Li S., & Aggarwal B.B. (2015). Identification of a Novel Compound (β-Sesquiphellandrene) From Turmeric (Curcuma longa) With Anticancer Potential: Comparison With Curcumin. Investigational New Drugs, https://doi.org/10.1007/s10637-015-0296-5
  22. Vimal A., Pal D., Tripathi T., & Kumar A. (2017). Eucalyptol, Sabinene and Cinnamaldehyde: Potent Inhibitors of Salmonella Target Protein L-Asparaginase. 3 Biotech, 7, 1–6. https://doi.org/10.1007/s13205-017-0891-6
  23. Washikah. (2016). Tumbuhan Zingeberaceae Sebagai Obat-Obatan. Serambi Saintia, 4(1), 35–43.
  24. Wu Y., Wang Y., Li Z.H., Wang C.F., Wei J.Y., Li X.L., Wang P.J., Zhou Z.F., Du S.S., Huang D.Y., & Deng Z.W. (2014). Composition of The Essential Oil From Alpinia galanga rhizomes and Its Bioactivity On Lasioderma serricorne. Bulletin of Insectology, 67(2), 247–254.
  25. Zhang L., Pan C., Ou Z., Liang X., Shi Y., Chi L., Zhang Z., Zheng X., Li C., & Xiang H. (2020). Chemical Profiling and Bioactivity of Essential Oils From Alpinia officinarum Hance From Ten Localities in China. Industrial Crops Products, 153, 112583. https://doi.org/10.1016/j.indcrop.2020.112583
  26. Zhang L., Yang Z., Chen F., Su P., Chen D., Pan W., Fang Y., Dong C., Zheng X., & Du Z. (2017). Composition and Bioactivity Assessment of Essential Oils of Curcuma longa L. Collected in China. Industrial Crops and Products, 109, 60–73. https://doi.org/10.1016/j.indcrop.2017.08.009