Main Article Content

Abstract

Background: Flavonoids are widely employed as phytomedicines and as secondary metabolites generated by plants, where they serve key roles in plant physiology. Antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal, and antiviral activities are only a few of the potential biological effects of flavonoids. The discovery of medicinal plants containing flavonoid chemicals is potential as a supportive and preventative treatment, notably for COVID-19 which has caused a pandemic in several countries, including Indonesia.
Objective: This study aimed to determine the total flavonoid content in the ethanolic extracts of C. asiatica leaves and Imperata cylindrica roots to find the potential of flavonoid-rich plants as an alternative source of COVID-19 treatment.
Methods: The ethanolic extracts from the combination of C. asiatica leaves and I. cylindrica roots (with five combination ratios) were tested for total flavonoid content using the UV-Vis Spectrophotometry method. The total flavonoid content of the extract combination was analyzed using a one-way ANOVA test.
Results: The total flavonoid contents of the combination of C. asiatica leaf and I. cylindrica root extracts at a ratio of 1:1, 2:3, 3:2, 4:1, and 1:4 were 45.88 ± 0.08, 42.14 ± 0.08, 40.52 ± 0.08, 66.28 ± 0.08, and 40.88 ± 0.13 mg/g EQ, respectively. The homogeneity with Levene's test obtained a p-value of 0.303. The one-way ANOVA exhibited the p-value of F-test statistics < 0.001.
Conclusion: The total flavonoid contents of ethanolic extracts from C. asiatica leaves and I. cylindrica roots are at a ratio of 4:1 > 1:1 > 2:3 > 1:4 > 3:2. The high total flavonoid content plays a role in increasing anti-inflammatory and immunomodulatory activities in COVID-19 patients.
Keywords: Total flavonoid content, C. asiatica, I. cylindrica, UV-Vis Spectrophotometry, COVID-19

Article Details

Author Biographies

Anita Puspa Widiyana, Department of Pharmacy, Faculty of Medicine, Universitas Islam Malang, Malang, Indonesia

Department of Pharmacy

Sri Herlina, Department of Medicine, Faculty of Medicine, Universitas Islam Malang, Malang, Indonesia

Department of Medicine

Didi Nurhadi Illian, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia

Department of Pharmacy

References

  1. Al Manar, P. (2018). Pengetahuan Etnofarmakologi Tumbuhan Alang-Alang (Imperata cylindrica L.) Oleh Beberapa Masyarakat Etnik di Indonesia. Talenta Conference Series: Trop. Med. , 1(3), 114-116. https://doi.org/https://doi.org/10.32734/tm.v1i3.273
  2. Amić, D., Davidović-Amić, D., Beslo, D., Rastija, V., Lucić, B., & Trinajstić, N. (2007). SAR and QSAR of The Antioxidant Activity of Flavonoids. Curr Med Chem, 14(7), 827-845. https://doi.org/10.2174/092986707780090954
  3. Bhattacharya, R., Parmar, K., Itankar, P., & Prasad, D. S. (2017). Phytochemical and Pharmacological Evaluation of Organic and Non-organic Cultivated Nutritional Centella asiatica Collected after Different Time Intervals of Harvesting. South African Journal of Botany, 112, 237-245. https://doi.org/10.1016/j.sajb.2017.06.003
  4. Chang, S. K., & Othman, A. (2014). Phenolics, Flavonoids Content and Antioxidant Activities of 4 Malaysian Herbal Plants. International Food Research Journal, 21, 759-766.
  5. Chen, Y., Wang, J., & Wan, D. (2010). Determination of Total Flavonoids in Three Sedum Crude Drugs by UV-Vis Spectrophotometry [Original Article]. Pharmacognosy Magazine, 6(24), 259-263. https://doi.org/10.4103/0973-1296.71784
  6. da Silva, L. A., Pezzini, B. R., & Soares, L. (2015). Spectrophotometric Determination of The Total Flavonoid Content in Ocimum basilicum L. (Lamiaceae) Leaves. Pharmacogn Mag, 11(41), 96-101. https://doi.org/10.4103/0973-1296.149721
  7. Fernandes, A. J., Ferreira, M. R., Randau, K. P., de Souza, T. P., & Soares, L. A. (2012). Total Flavonoids Content in The Raw Material and Aqueous Extractives from Bauhinia monandra Kurz (Caesalpiniaceae). ScientificWorldJournal, 2012, 923462. https://doi.org/10.1100/2012/923462
  8. Harron, D. W. G. (2013). Technical Requirements for Registration of Pharmaceuticals for Human Use: the ICH Process. The Textbook of Pharmaceutical Medicine 1994 (November 1996), 447–460. https://doi.org/https://doi.org/10.1002/9781118532331.ch23
  9. Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL Protease by Flavonoids. J Enzyme Inhib Med Chem, 35(1), 145-151. https://doi.org/10.1080/14756366.2019.1690480
  10. Jung, Y. K., & Shin, D. (2021). Imperata cylindrica: A Review of Phytochemistry, Pharmacology, and Industrial Applications. Molecules, 26(5). https://doi.org/10.3390/molecules26051454
  11. Khaerunnisa, S., Aminah, N. S., Kristanti, A. N., Kuswarini, S., Wungu, C. D. K., Soetjipto, S., & Suhartati, S. (2020). Isolation and Identification of A Flavonoid Compound and In Vivo Lipid-lowering Properties of Imperata cylindrica. Biomedical reports, 13(5), 38-38. https://doi.org/10.3892/br.2020.1345
  12. Liskova, A., Samec, M., Koklesova, L., Samuel, S. M., Zhai, K., Al-Ishaq, R. K., Abotaleb, M., Nosal, V., Kajo, K., Ashrafizadeh, M., Zarrabi, A., Brockmueller, A., Shakibaei, M., Sabaka, P., Mozos, I., Ullrich, D., Prosecky, R., La Rocca, G., Caprnda, M., Büsselberg, D., Rodrigo, L., Kruzliak, P., & Kubatka, P. (2021). Flavonoids Against the SARS-CoV-2 Induced Inflammatory Storm. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 138, 111430-111430. https://doi.org/10.1016/j.biopha.2021.111430
  13. Mandal, A., Jha, A. K., & Hazra, B. (2021). Plant Products as Inhibitors of Coronavirus 3CL Protease. Frontiers in pharmacology, 12, 583387-583387. https://doi.org/10.3389/fphar.2021.583387
  14. Mrityunjaya, M., Pavithra, V., Neelam, R., Janhavi, P., Halami, P. M., & Ravindra, P. V. (2020). Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol, 11, 570122. https://doi.org/10.3389/fimmu.2020.570122
  15. Mustapa, M. A., Taupik, M., & Lalapa, A. R. (2019). Analisis Kadar Flavonoid Total menggunakan Spektrofotometri Uv-Vis dalam Kulit Buah Salak (Salacca zalacca V.). Journal Syifa Sciences and Clinical Research, 1(1), 21–27. https://doi.org/ https://doi.org/10.37311/jsscr.v1i1.2200
  16. Nguyen, T. T., Woo, H. J., Kang, H. K., Nguyen, V. D., Kim, Y. M., Kim, D. W., Ahn, S. A., Xia, Y., & Kim, D. (2012). Flavonoid-mediated Inhibition of SARS Coronavirus 3C-like Protease Expressed in Biotechnol Lett, 34(5), 831-838. https://doi.org/10.1007/s10529-011-0845-8
  17. Ngwa, W., Kumar, R., Thompson, D., Lyerly, W., Moore, R., Reid, T.-E., Lowe, H., & Toyang, N. (2020). Potential of Flavonoid-Inspired Phytomedicines against COVID-19. Molecules, 25(11), 2707. https://www.mdpi.com/1420-3049/25/11/2707
  18. Nurcholis, W., Sya'bani Putri, D. N., Husnawati, H., Aisyah, S. I., & Priosoeryanto, B. P. (2021). Total Flavonoid Content and Antioxidant Activity of Ethanol and Ethyl Acetate Extracts from Accessions of Amomum compactum Fruits. Annals of Agricultural Sciences, 66(1), 58-62. https://doi.org/10.1016/j.aoas.2021.04.001
  19. Puspitasari, A. D., & Wulandari, R. L. (2017). Antioxidant Activity, Determination of Total Phenolic and Flavonoid Content of Muntingia calabura L. Extracts [Antioxidant, phenolic, flavonoid, Muntingia calabura]. 2017, 7(2), 12. https://doi.org/10.12928/pharmaciana.v7i2.7104
  20. Saakre, M., Mathew, D., & Ravisankar, V. (2021). Perspectives on Plant Flavonoid Quercetin-based Drugs for Novel SARS-CoV-2. Beni Suef Univ J Basic Appl Sci, 10(1), 21. https://doi.org/10.1186/s43088-021-00107-w
  21. Sapiun, Z., Pangalo, P., Wicita, P., & Daud, R. (2020). Determination of Total Flavonoid Levels of Ethanol Extract Sesewanua Leaf (Clerodendrum Fragrans Wild) with Maceration Method using UV-Vis Spectrofotometry. Pharmacognosy Journal, 12, 356-360. https://doi.org/10.5530/pj.2020.12.56
  22. Setiati, S., & Azwar, M. K. (2020). COVID-19 and Indonesia. Acta medica Indonesiana, 52(1), 84-89.
  23. Shah, P. M., Vishnu Priya, V., & Gayathri, R. (2016). Quercetin – A Flavonoid: A Systematic Review. Journal of Pharmaceutical Sciences and Research, 8(8), 878–880.
  24. Solnier, J., & Fladerer, J. P. (2021). Flavonoids: A Complementary Approach to Conventional Therapy of COVID-19? Phytochem Rev, 20(4), 773-795. https://doi.org/10.1007/s11101-020-09720-6
  25. Subban, R., Veerakumar, A., Manimaran, R., Hashim, K. M., & Balachandran, I. (2008). Two New Flavonoids from Centella asiatica (Linn.). J Nat Med, 62(3), 369-373. https://doi.org/10.1007/s11418-008-0229-0
  26. Suhendra, C. P., Widarta, I. W. R., & Wiadnyani, A. A. I. S. (2019). Pengaruh Konsentrasi Etanol terhadap Aktivitas Antioksidan Ekstrak Rimpang Ilalang (Imperata cylindrica (L) Beauv.) pada Ekstraksi menggunakan Gelombang Ultrasonik. Jurnal Ilmu dan Teknologi Pangan (ITEPA), 8(1), 27. https://doi.org/https://doi.org/10.24843/itepa.2019.v08.i01.p04
  27. Vasavi, H. S., Arun, A. B., & Rekha, P. D. (2016). Anti-quorum Sensing Activity of Flavonoid-Rich Fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. J Microbiol Immunol Infect, 49(1), 8-15. https://doi.org/10.1016/j.jmii.2014.03.012
  28. WHO. (2021). World Health Organization. Journal of the American Medical Women’s Association, 9(6), 192.
  29. Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: Promising Natural Compounds Against Viral Infections. Arch Virol, 162(9), 2539-2551. https://doi.org/10.1007/s00705-017-3417-y