Main Article Content

Abstract

Abstract
Background: Cardiovascular disease is the leading cause of death in the world. The therapeutic activity of Monascus sp. pigment can act as an anticardiovascular agent. Research on Monascus sp. pigment is rapidly developing, including the discovery of new pigments, the methods used, and their identification. Currently, there are 57 dyestuff compounds that have been successfully isolated from Monascus molds. So, researchers conducted an in-silico study of Monascus sp.
Objective: To determine whether it can have better interactions and activities as an anticardiovascular medicine candidate.
Method: PAK1 is used as a receptor for anticardiovascular drugs. 57 test compounds were carried out for ligand preparation and application of Lipinski's rule of five by using MarvinSketch software, ADME prediction and toxicity testing using PreADMET, the docking process using Autodock tools, and visualization using Discovery Studio.
Results: The results of the docking analysis are seen from the values of binding affinity consecutively. compound R3 (-8.74 kcal/mol), red shandong (-8.16 kcal/mol), and monaphilol (-8.14 kcal/mol) are lower than the comparison compound bisoprolol (-6.44 kcal/mol), which shows that the three compounds have better interactions than the comparison compounds.
Conclusion: Derivative compounds from Monascus sp. Pigment are predicted to have better interactions and can be used as anticardiovascular medicine candidates.
Keywords: Monascus sp., pigment, anticardiovascular, in silico, PAK1, ADME, and toxicity

Keywords

Monascus sp. Pigment Anticardiovascular In silico PAK1 ADME Toxicity

Article Details

References

  1. Aisyah, I. (2014). Hubungan Penggunaan Obat Kardiovaskular terhadap Terjadinya Xerostomia pada Pasien Penyakit Jantung Koroner di RSUD Dr. Pirngadi Medan Universitas Sumatera Utara. Medan.
  2. Amelia, F. (2013). Modeling struktur protein vaksin H5N1 HA BTB menggunakan I-Tasser. Jurnal Sainstek, 7(1).
  3. Farahdika, A., & Azam, M. (2015). Faktor Risiko yang Berhubungan dengan Penyakit Jantung Koroner pada Usia Dewasa Madya (41-60 Tahun) (Studi Kasus di RS Umum Daerah Kota Semarang). Unnes Journal of Public Health, 4(2), 117-123. https://doi.org/https://doi.org/10.15294/ujph.v4i2.5188
  4. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1), 3-25. https://doi.org/https://doi.org/10.1016/S0169-409X(96)00423-1
  5. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
  6. Meiyanto, E. (2012). Docking Kurkumin Dan Senyawa Analognya Pada Reseptor Progesteron: Studi Interaksinya Sebagai Selective Progesterone Receptor Modulators (Sprms). Pharmacon: Jurnal Farmasi Indonesia UMS, 13(2), 55-60. https://doi.org/10.23917/pharmacon.v13i2.10
  7. Mostafa, M. E., & Abbady, M. S. (2014). Secondary metabolites and bioactivity of the Monascus pigments review article. Global Journal of Biotechnology and Biochemistry, 9(1), 1-13. https://doi.org/10.5829/idosi.gjbb.2014.9.1.8268
  8. Nguyen, T., Karl, M., & Santini, A. (2017). Red Yeast Rice. Foods, 6(3), 19. https://doi.org/https://doi.org/10.3390/foods6030019
  9. Nursamsiar, N., Alprida Tandi, T., & Akbar, A. (2016). Studi in Silico Senyawa Turunan Analog Kalkon Dan Pirimidin Sebagai Antiinflamasi: Prediksi Absorpsi, Distribusi, dan Toksisitas. Pharmacy: Jurnal Farmasi Indonesia, 13(01). https://doi.org/10.30595/pji.v13i1.891
  10. Pebriana, R. B., Romadhan, A. F., Yunianto, A., & Rokhman, M. R. (2012). Docking Kurkumin dan Senyawa Analognya pada Reseptor Progesteron: Studi Interaksinya sebagai Selective Progesterone Receptor Modulators (SPRMs). Pharmacon: Jurnal Farmasi Indonesia UMS, 13(2). http://hdl.handle.net/11617/970
  11. Prasetia, T. (2011). Simulasi Dinamika Molekul Kompleks Histone Deacetylase (HDAC) Kelas II Homo Sapiens dengan Suberoylanilide Hydroxamic Acid (SAHA) dan Turunannya sebagai Inhibitor Kanker Serviks Universitas Indonesia. Depok.
  12. Purnomo, H. (2013). Kimia Komputasi Uji in Silico Senyawa Antikanker Yogyakarta: Pustaka Pelajar. 25
  13. Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci, 6(2), 147-172. https://doi.org/10.1002/wcms.1240
  14. Ruswanto, R. (2015). Molecular docking empat turunan isonicotino hydrazide pada mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA). Jurnal Kesehatan Bakti Tunas Husada: Jurnal Ilmu-ilmu Keperawatan, Analis Kesehatan dan Farmasi, 13. https://doi.org/10.36465/jkbth.v13i1.25
  15. Sabidó, M., Thilo, H., & Guido, G. (2019). Long-term effectiveness of bisoprolol in patients with angina: A real-world evidence study. Pharmacol Res, 139, 106-112. https://doi.org/10.1016/j.phrs.2018.10.031
  16. Santoso, B., Utomo, R. S., & Wiyoga, M. D. (2016). Analisis hubungan senyawa golongan flavonoid dari 24 famili tanaman terhadap aktivitas penangkap radikalnya. In: . Prosiding Seminar Nasional Kimia, Universitas Jenderal Achmad Yani, Bandung.
  17. WHO. (2015). Library Cataloguing - Publication Data. Heart: Technical Pacakege for Cardiovaskuler Disease Management in Primary Health Care Switzerland. WHO Press. Retrieved Des 27 from https://who.int/tb/data
  18. Yuliana, A., Singgih, M., Julianti, E., & Blanc, P. J. (2017). Derivates of azaphilone Monascus pigments. Biocatalysis and Agricultural Biotechnology, 9, 183-194. https://doi.org/https://doi.org/10.1016/j.bcab.2016.12.014