Main Article Content

Abstract

Background: The high prevalence of cancer leads to the development of new strategies for cancer therapy. The FDA has already approved the amino-acid degrading enzyme as a treatment for lymphoma and leukemia. Furthermore, research related to other amino acid-degrading enzymes was carried out to open up the potential for the development of new cancer therapy strategies. As an amino acid-degrading enzyme, arginase breaks down arginine into urea and ornithine. It is an important part of the urea cycle and may be able to fight tumors.
Objective: This article review aims to provide information related to arginase in cancer therapy.
Method: This review article was written based on a literature study by using electronic databases, including Google Scholar, ScienceDirect, and PubMed, from the last 10 years of publication, using keywords: therapeutic enzymes, cancer arginine, arginase, and recombinant human arginase.
Results: Studies showed that arginase has the potential for cancer therapy. Arginase production has been carried out in several scientific studies and showed good results.
Conclusion: Arginase has the potential to be developed as a cancer therapy. Hence, the development of arginase production can be one of the solutions for alternative cancer treatments.
Keywords: Arginase, amino acid-degrading enzyme, cancer


Intisari
Latar belakang: Tingginya prevalensi kanker secara global mendorong pengembangan baru strategi terapi kanker. Asparaginase sebagai enzim pendegradasi asam amino telah digunakan dan disetujui oleh FDA untuk terapi leukimia dan limfoma. Selanjutnya, penelusuran terkait enzim pendegrasi asam amino lainnya dilakukan untuk membuka potensi pengembangan strategi terapi kanker yang baru. Arginase merupakan pendegradasi asam amino yang berperan dalam siklus urea dengan menghidrolisis arginin menjadi urea and ornitin dan memiliki potensi aktivitas antitumor.
Tujuan: Ulasan artikel ini bertujuan untuk memberikan informasi terkait enzim arginase dalam terapi kanker.
Metode: Strategi pencarian dilakukan pada database elektronik pada artikel dalam kurun waktu 10 tahun terakhir, meliputi database Google Scholar, ScienceDirect, dan PubMed. Kata kunci yang digunakan diantaranya therapeutic enzymes, cancer arginine, arginase, dan recombinant human arginase.
Hasil: Beberapa studi menunjukkan bahwa arginase berpotensi menjadi terapi kanker. Produksi arginase telah dilakukan dalam beberapa penelitian ilmiah dan menunjukkan hasil yang baik.
Kesimpulan: Arginase memiliki potensi menjadi terapi kanker, sehingga pengembangan produksi arginase dapat menjadi salah satu solusi untuk alternatif pengobatan kanker.
Kata kunci: Arginase, enzim pendegradasi asam amino, kanker

Keywords

arginase amino acid-degrading enzyme cancer

Article Details

References

  1. Agrawal V., Woo J.H., Mauldin J.P., Jo C., Stone E.M., Georgiou G., & Frankel A.E. (2012). Cytotoxicity of Human Recombinant Arginase I (Co)-PEG5000 In The Presence of Supplemental L-Citrulline Is Dependent On Decreased Argininosuccinate Synthetase Expression In Human Cells. Anti-Cancer Drugs, 23(1), 51–64. https://doi.org/10.1097/CAD.0b013e32834ae42b
  2. Anakha J., Kawathe P.S., Datta S., Jawalekar S.S., Banerjee U.C., & Pande A.H. (2022). Human Arginase 1, A Jack of All Trades?. 3 Biotech, 12(264), 1–9. https://doi.org/10.1007/s13205-022-03326-9
  3. Bach S., Hawkins R., & Swaine D. (1963). A Short Method for the Purification of Arginase from Ox Liver. Biochemical Journal, 89, 263–265. https://doi.org/10.1042/bj0890263
  4. Benucci I., Fiorelli V., Lombardelli C., Liburdi K., & Esti M. (2017). Corrigendum to Kinetic Characterization of Arginase From Saccharomyces Cerevisiae During Alcoholic Fermentation At Different Temperatures. LWT-Food Science and Technology, 84, 876. https://doi.org/10.1016/j.lwt.2017.06.056
  5. Bhatta A., Yao L., Xu Z., Toque H.A., Chen J., Atawia R.T., Fouda A.Y., Bagi Z., Lucas, R., Caldwell R.B., & Caldwell R.W. (2017). Obesity-Induced Vascular Dysfunction and Arterial Stiffening Requires Endothelial Cell Arginase 1. Cardiovascular Research, 113(13), 1664–1676. https://doi.org/10.1093/cvr/cvx164
  6. Caldwell R.B., Toque H.A., Narayanan S.P., & Caldwell R.W. (2015). Arginase: An Old Enzyme With New Tricks. Trends Pharmacological Sciences, 36(6), 395–405. https://doi.org/10.1016/j.tips.2015.03.006
  7. Cheng P.N.-M., Lam T.-L., Lam W.-M., Tsui S.-M., Cheng A.W.-M., Lo W.-H., Leung Y.-C. (2007). Pegylated Recombinant Human Arginase (rhArg-peg5,000mw) Inhibits the In vitro and In vivo Proliferation of Human Hepatocellular Carcinoma through Arginine Depletion. Cancer Research, 67,(1) 309–317. https://doi.org/10.1158/0008-5472.CAN-06-1945
  8. Choy C.T., Cheong H.T., U K.P., Wong C.H., & Loong H.H.F. (2015). Preclinical Evaluation of The Recombinant Human Arginase PEG-BCT-100 leading To Arginine Deprivation In Sarcomas. Cancer Research, 75, 5512–5512. https://doi.org/10.1158/1538-7445.AM2015-5512
  9. Chung S.F., Kim C.F., Tam S.Y., Choi M.C., So P.K., Wong K.Y., Leung Y.C., & Lo W.H. (2020). A Bioengineered Arginine-Depleting Enzyme As A Long-Lasting Therapeutic Agent Against Cancer. Applied Microbiology and Biotechnology, 104(9), 3921–3934. https://doi.org/10.1007/s00253-020-10484-4
  10. De Santo C., Booth S., Vardon A., Cousins A., Tubb V., Perry T., Noyvert B., Beggs A., Ng M., Halsey C., Kearns P., Cheng P., & Mussai F. (2018). The Arginine Metabolome In Acute Lymphoblastic Leukemia Can Be Targeted By The Pegylated-Recombinant Arginase I BCT-100. International Journal of Cancer, 142(7), 1490–1502. https://doi.org/10.1002/ijc.31170
  11. FDA, 2022. Fda Approves Asparaginase Erwinia Chrysanthemi (Recombinant) for Leukemia and Lymphoma URL https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-asparaginase-erwinia-chrysanthemi-recombinant-leukemia-and-lymphoma (accessed 6.18.22).
  12. Fultang L., Vardon A., De Santo C., & Mussai F. (2016). Molecular Basis and Current Strategies of Therapeutic Arginine Depletion For Cancer. International Journal of Cancer, 139(3), 501–509. https://doi.org/10.1002/ijc.30051
  13. Huang K., Zhang T., Jiang B., Mu W., & Miao M. (2016). Characterization of A Thermostable Arginase From Rummeliibacillus pycnus SK31.001. Journal of Molecular Catalysis B: Enzymatic, 133, 568–575. https://doi.org/10.1016/j.molcatb.2016.11.020
  14. Hung Y.-H., Huang H.-L., Chen W.-C., Yen M.-C., Cho C.-Y., Weng T.-Y., Wang C.-Y., Chen Y.-L., Chen L.-T., & Lai M.-D. (2017). Argininosuccinate Lyase Interacts With Cyclin A2 In Cytoplasm and Modulates Growth of Liver Tumor Cells. Oncology Report, 37(2), 969–978. https://doi.org/10.3892/or.2016.5334
  15. Kumari N., & Bansal S. (2021). Arginine Depriving Enzymes: Applications As Emerging Therapeutics In Cancer Treatment. Cancer Chemotherapy and Pharmacology, 88(4), 565–594. https://doi.org/10.1007/s00280-021-04335-w
  16. Leung S.L., Ho M.K., Lam Y.M., Chow H.Y., So Y.H., & Leung Y.C. (2019). PEGylated Recombinant Human Arginase As A Drug For Breast Cancer. Hong Kong Med J, 25(6), 28–31.
  17. Li L., Wang Y., Chen J., Cheng B., Hu J., Zhou Y., Gao X., Gao L., Mei X., Sun M., Zhang Z., & Song H. (2013). An Engineered Arginase FC Protein Inhibits Tumor Growth In Vitro and In Vivo. Evidence-Based Complementary and Alternative Medicine, 2013, 1–9. https://doi.org/10.1155/2013/423129
  18. Moradi R., Mohammadzadeh R., & Akbari A. (2021). Kappa-Carrageenan Crosslinked Magnetic Folic Acid-Conjugated Chitosan Nanocomposites for Arginase Encapsulation, Delivery and Cancer Therapy. Nano Life, 11(3), 2140005.
  19. Nadaf P., & Vedamurthy A.B. (2020). Optimization Of L-arginase Production By Pseudomonas Sp. Strain PV1 Under Submerged Fermentation. International Journal of Scientific and Technology Research, 9(1), 4390–4395.
  20. Nadaf P.D., Kulkarni A.G., & Vedamurthy A.B. (2019). Isolation, Screening and Characterization of L-Arginase Producing Soil Bacteria. International Journal of Pharmaceutical Sciences and Research, 10(7), 3440–3444. https://doi.org/10.13040/IJPSR.0975-8232.10(7).3440-44
  21. Global Observatory Cancer (GCO). (2022). Estimated Number of New Cases in 2020, All Cancers, Both Sexes
  22. Pandey D., Bhuni, A., Oh Y.J., Chang F., Bergman Y., Kim J.H., Serbo J., Boronina T.N., Cole R.N., Van Eyk J., Remaley A.T., Berkowitz D.E., & Romer L.H. (2014). OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase. Circulation Research, 115(4), 450–459. https://doi.org/10.1161/CIRCRESAHA.115.304262
  23. Patil M.D., Bhaumik J., Babykutty S., Banerjee U.C., & Fukumura D. (2016). Arginine Dependence of Tumor Cells: Targeting A Chink In Cancer’s Armor. Oncogene, 35(38), 4957–4972. https://doi.org/10.1038/onc.2016.37
  24. Schlune A., Vom Dahl S., Häussinger D., Ensenauer R., & Mayatepek E. (2015). Hyperargininemia Due To Arginase I Deficiency: The Original Patients and Their Natural History, and A Review of The Literature. Amino Acids 47(9), 1751–1762. https://doi.org/10.1007/s00726-015-2032-z
  25. Stone E., Chantranupong L., Gonzalez C., O’Neal J., Rani M., Vandenberg C., & Georgiou G. (2012). Strategies For Optimizing The Serum Persistence of Engineered Human Arginase I For Cancer Therapy. Journal of Controlled Release, 158(1), 171–179. https://doi.org/10.1016/j.jconrel.2011.09.097
  26. Stone E.M., Glazer E.S., Chantranupong L., Cherukuri P., Breece R.M., Tierney D.L., Curley S.A., Iverson B.L., & Georgiou G. (2010). Replacing Mn2+ with Co2+ in Human Arginase I Enhances Cytotoxicity Towards L-Arginine Auxotrophic Cancer Cell Lines. ACS Chemical Biology, 5(3), 333–342. https://doi.org/10.1016/j.earlhumdev.2006.05.022
  27. Vardon A., Dandapani M., Cheng D., Cheng P., De Santo C., & Mussai F. 2017. Arginine Auxotrophic Gene Signature In Paediatric Sarcomas and Brain Tumours Provides A Viable Target For Arginine Depletion Therapies. Oncotarget, 8(38), 63506–63517. https://doi.org/10.18632/oncotarget.18843
  28. Wang Z., Xie Q., Zhou H., Zhang M., Shen J., & Ju D. (2021). Amino Acid Degrading Enzymes and Autophagy in Cancer Therapy. Frontiers in Pharmacology, 11, 1–9. https://doi.org/10.3389/fphar.2020.582587
  29. Xiong Y., Yepuri G., Forbiteh M., Yu Y., Montani J.-P., Yang Z., & Ming X.-F. (2014). ARG2 Impairs Endothelial Autophagy Through Regulation of MTOR and PRKAA/AMPK Signaling In Advanced Atherosclerosis. Autophagy, 10(12), 2223–2238. https://doi.org/10.4161/15548627.2014.981789
  30. Yau T., Cheng P.N., Chan P., Chan W., Chen L., Yuen J., Pang R., Fan S.T., & Poon R.T. (2013). A Phase 1 Dose-Escalating Study of Pegylated Recombinant Human Arginase 1 (Peg-rhArg1) In Patients With Advanced Hepatocellular Carcinoma. Investigational New Drugs, 31(1), 99–107. https://doi.org/10.1007/s10637-012-9807-9
  31. Yau T., Cheng P.N., Chan P., Chen L., Yuen J., Pang R., Fan S.T., Wheatley D.N., & Poon R.T. (2015). Preliminary Efficacy, Safety, Pharmacokinetics, Pharmacodynamics and Quality of Life Study of Pegylated Recombinant Human Arginase 1 In Patients With Advanced Hepatocellular Carcinoma. Investigational New Drugs, 33(2), 496–504. https://doi.org/10.1007/s10637-014-0200-8
  32. Zou S., Wang X., Liu P., Ke C., & Xu S. (2019). Arginine Metabolism and Deprivation In Cancer Therapy. Biomedicine and Pharmacotherapy, 118, 109210. https://doi.org/10.1016/j.biopha.2019.109210
  33. Zugazagoitia J., Guedes C., Ponce S., Ferrer I., Molina-Pinelo S., & Paz-Ares L. (2016). Current Challenges in Cancer Treatment. Clinical Therapeutics, 38(7), 1–16. https://doi.org/10.1016/j.clinthera.2016.03.026