Main Article Content

Abstract

Background: Ischemic stroke is an acute neurological injury resulting from focal damage to the central nervous system due to vascular obstruction and subsequent decrease in cerebral blood flow. Numerous animal models of ischemic stroke have been established to investigate its mechanism, pathophysiology, and risk factors. The animal model of ischemic stroke includes a global ischemia model and a focal ischemia model. This article describes various parameters, including hematological, biochemical, cytological, histological, and molecular factors, along with diverse biomarkers, that may support research in the development of novel, safer, and more effective therapeutic agents for ischemic stroke using animal models.
Objective: This research seeks to determine the appropriate test animal model and parameters for ischemic stroke experiments.
Method: A complete literature search was conducted across multiple databases, including NCBI, PubMed, and additional sources.
Results: According to reference studies, the animal model test in the ischemic stroke experiment comprised a focal ischemia model and a global ischemic model. The focal ischemic model is more pertinent to ischemic stroke in humans compared to the global ischemic model. In addition, focal ischemic models, including Middle Cerebral Artery Occlusion (MCAO), have been utilized in over 40% of 2,582 nerve protection trials. The wide variety of test animal models possesses distinct advantages and disadvantages, making it crucial to select the appropriate model. The parameters of ischemic stroke, including hematology, biochemistry, cytology, histology, and molecular analysis, together with their biomarkers, can help in identifying the incidence of ischemic stroke in test animals.
Conclusion: The focused ischemia model is a more pertinent animal model for ischemic stroke in relation to humans than the global ischemic model. Parameters utilized for the identification of ischemic stroke encompass hematology, biochemistry, cytology, histology, and molecular biology.

Keywords

global ischemic focal ischemic parameters ischemic stroke

Article Details

Author Biography

Lisa Agustina Botutihe, Faculty of Pharmacy, Ahmad Dahlan University, Yogyakarta, Indonesia

Pascasarjana Farmasi

References

  1. Alam, S. M., Md Arifuzzaman, -, Rahman, H., Rahman, H. Z., & Islam, M. R. (2014). Ischemic Stroke and Serum CPK: A Review. Bangladesh Journal of Neuroscience, 30(2), 112–116. https://doi.org/10.3329/bjn.v30i2.57395
  2. Alkireidmi, M. A., Al-Abbasi, F. A., Mehanna, M. G., & Moselhy, S. S. (2018). Biochemical markers as diagnostic/prognostic indicators for ischemic disease. African Health Sciences, 18(2), 287–294. https://doi.org/10.4314/ahs.v18i2.13
  3. Andrabi, S. S., Parvez, S., & Tabassum, H. (2020). Ischemic stroke and mitochondria: mechanisms and targets. Protoplasma, 257(2), 335–343. https://doi.org/10.1007/s00709-019-01439-2
  4. Ansari, S., Azari, H., Caldwell, K. J., Regenhardt, R. W., Hedna, V. S., Waters, M. F., Hoh, B. L., & Mecca, A. P. (2013). Endothelin-1 induced middle cerebral artery occlusion model for ischemic stroke with laser Doppler flowmetry guidance in rat. Journal of Visualized Experiments : JoVE, 72, 1–6. https://doi.org/10.3791/50014
  5. Bansal, S., Sangha, K. S., & Khatri, P. (2013). Drug treatment of acute ischemic stroke. American Journal of Cardiovascular Drugs, 13(1), 57–69. https://doi.org/10.1007/s40256-013-0007-6
  6. Bayat, M., & Haghani, M. (2017). Acute bilateral common carotid arteries occlusion (2VO) alone could not be a proper method for induction of ischemia in rats. Biomedicine and Pharmacotherapy, 96(November), 1557–1558. https://doi.org/10.1016/j.biopha.2017.11.102
  7. Cai, Q., Xu, G., Liu, J., Wang, L., Deng, G., Liu, J., & Chen, Z. (2016). A modification of intraluminal middle cerebral artery occlusion/reperfusion model for ischemic stroke with laser Doppler flowmetry guidance in mice. Neuropsychiatric Disease and Treatment, 12, 2851–2858. https://doi.org/10.2147/NDT.S118531
  8. Chen, C. Y., Chen, R. J., & Lee, G. A. (2019). Two-vessel occlusion mouse model of cerebral ischemia-reperfusion. Journal of Visualized Experiments, 2019(145), 4–9. https://doi.org/10.3791/59078
  9. Cui, R., Iso, H., Yamagishi, K., Saito, I., Kokubo, Y., Inoue, M., & Tsugane, S. (2012). High serum total cholesterol levels is a risk factor of ischemic stroke for general Japanese population: The JPHC study. Atherosclerosis, 221(2), 565–569. https://doi.org/10.1016/j.atherosclerosis.2012.01.013
  10. Dai, P. M., Huang, H., Zhang, L., He, J., Zhao, X. D., Yang, F. H., Zhao, N., Yang, J. Z., Ge, L. J., Lin, Y., Yu, H. L., & Wang, J. H. (2017). A pilot study on transient ischemic stroke induced with endothelin-1 in the rhesus monkeys. Scientific Reports, 7(November 2016), 1–12. https://doi.org/10.1038/srep45097
  11. Dave, K. R., Della-Morte, D., Saul, I., Prado, R., & Perez-Pinzon, M. A. (2013). Ventricular Fibrillation-Induced Cardiac Arrest in the Rat as a Model of Global Cerebral Ischemia. Translational Stroke Research, 4(5), 571–578. https://doi.org/10.1007/s12975-013-0267-0
  12. Donkel, S. J., Benaddi, B., Dippel, D. W. J., Ten Cate, H., & De Maat, M. P. M. (2019). Prognostic hemostasis biomarkers in acute ischemic stroke: A systematic review. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(3), 360–372. https://doi.org/10.1161/ATVBAHA.118.312102
  13. Donkor, E. S. (2018). Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Research and Treatment, 2018. https://doi.org/10.1155/2018/3238165
  14. Dotson, A. L., Chen, Y., Zhu, W., Libal, N., Alkayed, N. J., & Offner, H. (2016). Partial MHC Constructs Treat Thromboembolic Ischemic Stroke Characterized by Early Immune Expansion. Translational Stroke Research, 7(1), 70–78. https://doi.org/10.1007/s12975-015-0436-4
  15. Durand, A., Chauveau, F., Cho, T. H., Bolbos, R., Langlois, J. B., Hermitte, L., Wiart, M., Berthezène, Y., & Nighoghossian, N. (2012). Spontaneous Reperfusion after In Situ Thromboembolic Stroke in Mice. PLoS ONE, 7(11). https://doi.org/10.1371/journal.pone.0050083
  16. Fidaleo, M., Cavallucci, V., & Pani, G. (2017). Nutrients, neurogenesis and brain ageing: From disease mechanisms to therapeutic opportunities. Biochemical Pharmacology, 141, 63–76. https://doi.org/10.1016/j.bcp.2017.05.016
  17. Fluri, F., Schuhmann, M. K., & Kleinschnitz, C. (2015). Animal models of ischemic stroke and their application in clinical research. Drug Design, Development and Therapy, 9, 3445–3454. https://doi.org/10.2147/DDDT.S56071
  18. Han, Y., Yuan, M., Guo, Y. S., Shen, X. Y., Gao, Z. K., & Bi, X. (2021). Mechanism of Endoplasmic Reticulum Stress in Cerebral Ischemia. Frontiers in Cellular Neuroscience, 15(August). https://doi.org/10.3389/fncel.2021.704334
  19. Hermann, D. M., Popa-Wagner, A., Kleinschnitz, C., & Doeppner, T. R. (2019). Animal models of ischemic stroke and their impact on drug discovery. Expert Opinion on Drug Discovery, 14(3), 315–326. https://doi.org/10.1080/17460441.2019.1573984
  20. Herson, P. S., & Traystman, R. J. (2014). Animal models of stroke: Translational potential at present and in 2050. Future Neurology, 9(5), 541–551. https://doi.org/10.2217/fnl.14.44
  21. Howells, D. W., Sena, E. S., & Macleod, M. R. (2014). Bringing rigour to translational medicine. Nature Reviews Neurology, 10(1), 37–43. https://doi.org/10.1038/nrneurol.2013.232
  22. Kim, S. J., Moon, G. J., & Bang, O. Y. (2013). Biomarkers for Stroke Discovering biomarkers for stroke. Journal of Stroke, 15(1), 27–37.
  23. Kumar, A., Aakriti, & Gupta, V. (2016). A review on animal models of stroke: An update. Brain Research Bulletin, 122, 35–44. https://doi.org/10.1016/j.brainresbull.2016.02.016
  24. Li, Y., & Zhang, J. (2021). Animal models of stroke. Animal Models and Experimental Medicine, 4(3), 204–219. https://doi.org/10.1002/ame2.12179
  25. Liu, L. B., Li, M., Zhuo, W. Y., Zhang, Y. S., & Xu, A. D. (2015). The role of Hs-CRP, D-dimer and fibrinogen in differentiating etiological subtypes of ischemic stroke. PLoS ONE, 10(2), 1–9. https://doi.org/10.1371/journal.pone.0118301
  26. Liu, F., Lu, J., Manaenko, A., Tang, J., & Hu, Q. (2018). Mitochondria in ischemic stroke: New insight and implications. Aging and Disease, 9(5), 924–937. https://doi.org/10.14336/AD.2017.1126
  27. Lu, D., Wu, Y., Qu, Y., Shi, F., Hu, J., Gao, B., Wang, B., Gao, G., He, S., & Zhao, T. (2016). A modified method to reduce variable outcomes in a rat model of four-vessel arterial occlusion. Neurological Research, 38(12), 1102–1110. https://doi.org/10.1080/01616412.2016.1249996
  28. Ma, J., Peng, C., Guo, W., Dong, Y. F., Dong, X. H., Sun, X., & Xie, H. H. (2012). A modified model of middle cerebral artery electrocoagulation in mice. CNS Neuroscience and Therapeutics, 18(9), 796–798. https://doi.org/10.1111/j.1755-5949.2012.00370.x
  29. Marino, K. M., Silva, E. R., & Windelborn, J. A. (2020). A comparison between chemical and gas hypoxia as models of global ischemia in zebrafish ( Danio rerio ) . Animal Models and Experimental Medicine, 3(3), 256–263. https://doi.org/10.1002/ame2.12132
  30. McCabe, C., Arroja, M. M., Reid, E., & Macrae, I. M. (2018). Animal models of ischaemic stroke and characterisation of the ischaemic penumbra. Neuropharmacology, 134(September), 169–177. https://doi.org/10.1016/j.neuropharm.2017.09.022
  31. Muchti, J. E., Anwar, Y., & Aman, A. K. (2019). Levels of protein C, protein S, and anti-thrombin III in acute ischemic stroke patients at Haj Adam Malik Hospital, Medan. Bali Medical Journal, 8(2), 460. https://doi.org/10.15562/bmj.v8i2.1378
  32. Orset, C., Haelewyn, B., Allan, S. M., Ansar, S., Campos, F., Cho, T. H., Durand, A., El Amki, M., Fatar, M., Garcia-Yébenes, I., Gauberti, M., Grudzenski, S., Lizasoain, I., Lo, E., Macrez, R., Margaill, I., Maysami, S., Meairs, S., Nighoghossian, N., … Vivien, D. (2016). Efficacy of Alteplase in a Mouse Model of Acute Ischemic Stroke: A Retrospective Pooled Analysis. Stroke, 47(5), 1312–1318. https://doi.org/10.1161/STROKEAHA.116.012238
  33. Pontarelli, F., Ofengeim, D., Zukin, R., & Jonas, E. (2012). Mouse Transient Global Ischemia Two-Vessel Occlusion Model. Bio-Protocol, 2(18). https://doi.org/10.21769/bioprotoc.262
  34. Qian, C., Li, P. C., Jiao, Y., Yao, H. H., Chen, Y. C., Yang, J., Ding, J., Yang, X. Y., & Teng, G. J. (2016). Precise characterization of the penumbra revealed by MRI: A modified photothrombotic stroke model study. PLoS ONE, 11(4), 1–13. https://doi.org/10.1371/journal.pone.0153756
  35. Shash, M. H., Abdelrazek, R., Abdelgeleel, N. M., Ahmed, R. M., & El-baih, A. H. (2021). Validity of neuron-specific enolase as a prognostic tool in acute ischemic stroke in adults at Suez Canal University Hospital. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 57(1). https://doi.org/10.1186/s41983-021-00268-6
  36. Soeandy, C., Salmasi, F., Latif, M., Elia, A. J., Suo, N. J., & Henderson, J. T. (2019). Endothelin-1-mediated cerebral ischemia in mice: early cellular events and the role of caspase-3. Apoptosis, 24(7–8), 578–595. https://doi.org/10.1007/s10495-019-01541-z
  37. Sporns, P. B., Hanning, U., Schwindt, W., Velasco, A., Minnerup, J., Zoubi, T., Heindel, W., Jeibmann, A., & Niederstadt, T. U. (2017). Ischemic Stroke: What Does the Histological Composition Tell Us about the Origin of the Thrombus? Stroke, 48(8), 2206–2210. https://doi.org/10.1161/STROKEAHA.117.016590
  38. Steliga, A., Kowiański, P., Czuba, E., Waśkow, M., Moryś, J., & Lietzau, G. (2020). Neurovascular Unit as a Source of Ischemic Stroke Biomarkers—Limitations of Experimental Studies and Perspectives for Clinical Application. Translational Stroke Research, 11(4), 553–579. https://doi.org/10.1007/s12975-019-00744-5
  39. Tarr, D., Graham, D., Roy, L. A., Holmes, W. M., McCabe, C., Mhairi MacRae, I., Muir, K. W., & Dewar, D. (2013). Hyperglycemia accelerates apparent diffusion coefficient-defined lesion growth after focal cerebral ischemia in rats with and without features of metabolic syndrome. Journal of Cerebral Blood Flow and Metabolism, 33(10), 1556–1563. https://doi.org/10.1038/jcbfm.2013.107
  40. Whiteley, W., Tseng, M. C., & Sandercock, P. (2008). Blood biomarkers in the diagnosis of ischemic stroke: A systematic review. Stroke, 39(10), 2902–2909. https://doi.org/10.1161/STROKEAHA.107.511261
  41. Xie, J. Q., Lu, Y. P., Sun, H. L., Gao, L. N., Song, P. P., Feng, Z. J., & You, C. G. (2020). Sex Difference of Ribosome in Stroke-Induced Peripheral Immunosuppression by Integrated Bioinformatics Analysis. BioMed Research International, 2020. https://doi.org/10.1155/2020/3650935
  42. Xu, B., Xiao, A. J., Chen, W., Turlova, E., Liu, R., Barszczyk, A., Sun, C. L. F., Liu, L., Tymianski, M., Feng, Z. P., & Sun, H. S. (2016). Neuroprotective Effects of a PSD-95 Inhibitor in Neonatal Hypoxic-Ischemic Brain Injury. Molecular Neurobiology, 53(9), 5962–5970. https://doi.org/10.1007/s12035-015-9488-4
  43. Yabuki, Y., Shinoda, Y., Izumi, H., Ikuno, T., Shioda, N., & Fukunaga, K. (2015). Dehydroepiandrosterone administration improves memory deficits following transient brain ischemia through sigma-1 receptor stimulation. Brain Research, 1622, 102–113. https://doi.org/10.1016/j.brainres.2015.05.006
  44. Yaghi, S., & Elkind, M. S. V. (2015). Lipids and Cerebrovascular Disease: Research and Practice. Stroke, 46(11), 3322–3328. https://doi.org/10.1161/STROKEAHA.115.011164
  45. Yang, M., Pan, Y., Li, Z., Yan, H., Zhao, X., Liu, L., Jing, J., Meng, X., Wang, Y., & Wang, Y. (2019). Platelet count predicts adverse clinical outcomes after ischemic stroke or TIA: Subgroup analysis of CNSR II. Frontiers in Neurology, 10(APR), 1–7. https://doi.org/10.3389/fneur.2019.00370
  46. Yang, Z., Lin, P., Chen, B., Zhang, X., Xiao, W., Wu, S., Huang, C., Feng, D., Zhang, W., & Zhang, J. (2021). Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy, 17(10), 3048–3067. https://doi.org/10.1080/15548627.2020.1851897
  47. Yueniwati, yuyun P. W. (2015). Deteksi Dini Stroke Iskemik (pp. xxiv–324).
  48. Zhang, M., Lu, H., Xie, X., Shen, H., Li, X., Zhang, Y., Wu, J., Ni, J., Li, H., & Chen, G. (2020). TMEM175 mediates Lysosomal function and participates in neuronal injury induced by cerebral ischemia-reperfusion. Molecular Brain, 13(1), 1–15. https://doi.org/10.1186/s13041-020-00651-z
  49. Zhang, R., Bertelsen, L. B., Flø, C., Wang, Y., & Stødkilde-Jørgensen, H. (2016). Establishment and characterization of porcine focal cerebral ischemic model induced by endothelin-1. Neuroscience Letters, 635(1), 1–7. https://doi.org/10.1016/j.neulet.2016.10.036