Main Article Content

Abstract

Background: The Wnt/β-catenin signaling pathway, a highly conserved signaling axis involved in diverse physiological processes such as proliferation, differentiation, apoptosis, migration, invasion, and homeostasis balance, has been implicated in human cancer development and progression. Notably, various cancer types, such as colorectal cancer, hepatocellular carcinoma, melanoma, thyroid cancer, desmoid tumors, ovarian tumors, and multiple myeloma, have demonstrated associations with specific Wnt-activating mutations, emphasizing the widespread influence of the Wnt pathway in diverse malignancies.
Objective: This review highlights the inhibitors targeting the Wnt ligand-receptor interface, focusing on their preclinical and clinical evaluations in various cancer types. Additionally, we explore small-molecule design strategies, focusing on inhibitors of β-catenin, GSK-3, and Porcupine.
Method: Conducted as a narrative review, we collected and analyzed relevant papers from PubMed/Google Scholar and clinical trials associated with Wnt pathway inhibitors from clinicaltrial.gov. A total of 61 papers and 24 clinical trials were reviewed, providing an overview of the molecular insights within the research landscape of this field.
Result: Dysregulated Wnt/β-catenin signaling is implicated in the progression of several solid tumors and hematological malignancies, highlighting the urgent need for targeted anticancer interventions. Our discussion on the inhibitors targeting the Wnt ligand-receptor interface highlights promising outcomes in both preclinical and clinical settings. This paper also presents the chemical structures of these compounds, detailing their interactions with key Wnt signaling components and their potential to disrupt aberrant signaling. The strategies for small-molecule design targeting the Wnt signal are discussed, highlighting inhibitors targeting β-catenin, GSK-3, and Porcupine. The complex chemical structures of these compounds are elucidated, showcasing their specific interactions with key components of the Wnt signaling pathway and their potential to disrupt aberrant Wnt signaling in diverse cancer types. The emerging directions and future prospects in Wnt pathway research demonstrate the importance of utilizing big data and artificial intelligence for drug development.
Conclusion: The review delves into the potential inhibition of the disheveled protein as a promising target for cancer therapy, proposing novel molecular design strategies based on recent discoveries.
Keywords: Wnt signaling pathway, β-catenin inhibitors, GSK-3 inhibitors, porcupine inhibitors, Disheveled protein inhibitors

Keywords

Wnt signaling pathway β-catenin inhibitors GSK-3 inhibitors porcupine inhibitors Disheveled protein inhibitors

Article Details

References

  1. Alharbi, K.S., Almalki, W.H., Makeen, H.A., Albratty, M., Meraya, A.M., Nagraik, R., Sharma, A., Kumar, D., Chellappan, D.K., Singh, S.K., Dua, K., & Gupta, G. (2022). Role of Medicinal Plant‐Derived Nutraceuticals As A Potential Target For The Treatment Of Breast Cancer. Journal of Food Biochemistry, 46, 1-18. https://doi.org/10.1111/jfbc.14387
  2. Beurel, E., Grieco, S.F., & Jope, R.S. (2015). Glycogen Synthase Kinase-3 (GSK3): Regulation, Actions, and Diseases. Pharmacology & Therapeutics, 148, 114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016
  3. Bisevac, J., Katta, K., Petrovski, G., Moe, M.C., & Noer, A. (2023). Wnt/β-Catenin Signaling Activation Induces Differentiation in Human Limbal Epithelial Stem Cells Cultured Ex Vivo. Biomedicines, 11(7), 1-19. https://doi.org/10.3390/biomedicines11071829
  4. Boone, J.D., Arend, R.C., Johnston, B.E., Cooper, S.J., Gilchrist, S.A., Oelschlager, D.K., Grizzle, W.E., McGwin, G., Gangrade, A., Straughn, J.M., & Buchsbaum, D.J. (2016). Targeting The Wnt/β-Catenin Pathway In Primary Ovarian Cancer With The Porcupine Inhibitor WNT974. Laboratory Investigation, 96, 249–259. https://doi.org/10.1038/labinvest.2015.150
  5. Cao, M.-Q., You, A.-B., Zhu, X.-D., Zhang, W., Zhang, Y.-Y., Zhang, S.-Z., Zhang, K., Cai, H., Shi, W.-K., Li, X.-L., Li, K.-S., Gao, D.-M., Ma, D.-N., Ye, B.-G., Wang, C.-H., Qin, C.-D., Sun, H.-C., Zhang, T., & Tang, Z.-Y. (2018). miR-182-5p Promotes Hepatocellular Carcinoma Progression By Repressing FOXO3a. Journal of Hematology & Oncology, 11(12), 1-12. https://doi.org/10.1186/s13045-018-0555-y
  6. Chen, L., Qin, F., Deng, X., Avruch, J., & Zhou, D. (2012). Hippo Pathway In Intestinal Homeostasis and Tumorigenesis. Protein & Cell, 3(4), 305–310. https://doi.org/10.1007/s13238-012-2913-9
  7. Choi, B.-R., Cave, C., Na, C.H., & Sockanathan, S. (2020). GDE2-Dependent Activation of Canonical Wnt Signaling in Neurons Regulates Oligodendrocyte Maturation. Cell Reports, 31(5), 107540. https://doi.org/10.1016/j.celrep.2020.107540
  8. Coats, J.T., Tauro, S., & Sutherland, C. (2023). Elraglusib (Formerly 9-ING-41) Possesses Potent Anti-Lymphoma Properties Which Cannot Be Attributed To GSK3 Inhibition. Cell Communication and Signaling, 21(131), 1-7. https://doi.org/10.1186/s12964-023-01147-8
  9. Cook, N., Blagden, S., Lopez, J., Sarker, D., Greystoke, A., Harris, N., Kazmi, F., Naderi, A., Nintos, G., Franco, A., Pihlak, R., Shinde, R., Goodwin, L., Phillips, C., Robertson, J., Saunders, A., Tilston, C., Woodcock, S., & Plummer, R. (2021). 517MO Phase I Study of The Porcupine (PORCN) Inhibitor RXC004 In Patients With Advanced Solid Tumours. Annals of Oncology, 32, S586–S587. https://doi.org/10.1016/j.annonc.2021.08.1039
  10. Cortes, J.E., Faderl, S., Pagel, J., Jung, C.W., Yoon, S.-S., Koh, Y., Pardanani, A.D., Hauptschein, R.S., Lee, K.J., Lee, J.H. (2015). Phase 1 Study of CWP232291 In Relapsed/Refractory Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS). Journal of Clinical Oncology, 33(15), 7044. https://doi.org/10.1200/jco.2015.33.15_suppl.7044
  11. Cranmer, L.D., Razak, A.R.A., Ratan, R., Choy, E., George, S., Liebner, D.A., Stenehjem, D.D., Gounder, M.M. (2022). Results of A Phase I Dose Escalation and Expansion Study of tegavivint (BC2059), a first-in-class TBL1 Inhibitor For Patients With Progressive, Unresectable Desmoid Tumor. Journal of Clinical Oncology, 40(16), 11523. https://doi.org/10.1200/JCO.2022.40.16_suppl.11523
  12. DeNardo, B., Foster, J., Pinto, N.R., Sholler, G.L.S., Vo, K.T., Desai, A.V., Sun, J., Wagner, L.M., Macy, M.E., Mody, R., Oesterheld, J.E., Cash, T., Bhuta, R., Barbieri, E., Pearson, A.D., Cavalcante, L., Giles, F.J., Lulla, R.R. (2022). Phase 1/2 Study of Elraglusib (9-ING-41), A Small Molecule Selective Glycogen Synthase Kinase-3 Beta (GSK-3β) Inhibitor, Alone Or With Irinotecan, Temozolomide/Irinotecan Or Cyclophosphamide/Topotecan In Pediatric Patients With Refractory Malignancies: Interim Results. Journal of Clinical Oncology, 40(16), e22015. https://doi.org/10.1200/JCO.2022.40.16_suppl.e22015
  13. Ding, Z., Shi, C., Jiang, L., Tolstykh, T., Cao, H., Bangari, D.S., Ryan, S., Levit, M., Jin, T., Mamaat, K., Yu, Q., Qu, H., Hopke, J., Cindhuchao, M., Hoffmann, D., Sun, F., Helms, M.W., Jahn-Hofmann, K., Scheidler, S., Schweizer, L., Fang, D.D., Pollard, J., Winter, C., & Wiederschain, D., 2017. Oncogenic Dependency on β-Catenin In Liver Cancer Cell Lines Correlates With Pathway Activation. Oncotarget, 8, 114526–114539. https://doi.org/10.18632/oncotarget.21298
  14. El-Khoueiry, A.B., Ning, Y., Yang, D., Cole, S., Kahn, M., Zoghbi, M., Berg, J., Fujimori, M., Inada, T., Kouji, H., Lenz, Heinz-Josef. (2013). A Phase I First-In-Human Study of PRI-724 In Patients (pts) With Advanced Solid Tumors. Journal of Clinical Oncology, 31(15), 2501. https://doi.org/10.1200/jco.2013.31.15_suppl.2501
  15. Fang, G., Fan, J., Ding, Z., & Zeng, Y. (2023). Application of Biological Big Data and Radiomics In Hepatocellular Carcinoma. iLIVER, 2, 41–49. https://doi.org/10.1016/j.iliver.2023.01.003
  16. Flanagan, D.J., Barker, N., Costanzo, N.S.D., Mason, E.A., Gurney, A., Meniel, V.S., Koushyar, S., Austin, C.R., Ernst, M., Pearson, H.B., Boussioutas, A., Clevers, H., Phesse, T.J., & Vincan, E., 2019. Frizzled-7 Is Required for Wnt Signaling in Gastric Tumors with and Without Apc Mutations. Cancer Research, 79(5), 970–981. https://doi.org/10.1158/0008-5472.CAN-18-2095
  17. Flanagan, D.J., Woodcock, S.A., Phillips, C., Eagle, C., & Sansom, O.J. (2022). Targeting Ligand-Dependent Wnt Pathway Dysregulation In Gastrointestinal Cancers Through Porcupine Inhibition. Pharmacology & Therapeutics, 238, 1-13. https://doi.org/10.1016/j.pharmthera.2022.108179
  18. Gajos-Michniewicz, A., & Czyz, M. (2020). WNT Signaling in Melanoma. International Journal of Molecular Sciences, 21(14), 1-31. https://doi.org/10.3390/ijms21144852
  19. Giannakis, M., Le, D.T., Pishvaian, M.J., Weinberg, B.A., Papadopoulos, K.P., Shen, L., Gong, J., Li, J., Strickler, J.H., Zhou, A., Zhang, W., Parikh, A.R., Deming, D.A., Falchook, G.S., Cai, J., Rosenstein, L., Dorr, A., An, M.M. (2023). Phase 1 Study of WNT Pathway Porcupine Inhibitor CGX1321 and Phase 1b Study of CGX1321 + Pembrolizumab (pembro) In Patients (pts) With Advanced Gastrointestinal (GI) Tumors. Journal of Clinical Oncology, 41(16), 3514. https://doi.org/10.1200/JCO.2023.41.16_suppl.3514
  20. Grandy, D., Shan, J., Zhang, X., Rao, S., Akunuru, S., Li, H., Zhang, Y., Alpatov, I., Zhang, X.A., Lang, R.A., Shi, D.-L., & Zheng, J.J. (2009). Discovery and Characterization of a Small Molecule Inhibitor of the PDZ Domain of Dishevelled. Journal of Biological Chemistry, 284(24), 16256–16263. https://doi.org/10.1074/jbc.M109.009647
  21. Gray, J.E., Infante, J.R., Brail, L.H., Simon, G.R., Cooksey, J.F., Jones, S.F., Farrington, D.L., Yeo, A., Jackson, K.A., Chow, K.H., Zamek-Gliszczynski, M.J., Burris III, H.A. (2015). A First-In-Human Phase I dose-Escalation, Pharmacokinetic, and Pharmacodynamic Evaluation of Intravenous LY2090314, A Glycogen Synthase Kinase 3 Inhibitor, Administered In Combination With Pemetrexed and Carboplatin. Investigational New Drugs, 33, 1187–1196. https://doi.org/10.1007/s10637-015-0278-7
  22. Ha, H.-A., Yang, J.-S., Tsai, F.-J., Li, C.-W., Cheng, Y.-D., Li, J., Hour, M.-J., & Chiu, Y.-J. (2021). Establishment of a Novel Temozolomide Resistant Subline of Glioblastoma Multiforme Cells and Comparative Transcriptome Analysis With Parental Cells. Anticancer Research, 41(5), 2333–2347. https://doi.org/10.21873/anticanres.15008
  23. He, S., & Tang, S. (2020). WNT/β-Catenin Signaling In The Development of Liver Cancers. Biomedicine & Pharmacotherapy, 132, 1-8. https://doi.org/10.1016/j.biopha.2020.110851
  24. Hinze, L., Labrosse, R., Degar, J., Han, T., Schatoff, E.M., Schreek, S., Karim, S., McGuckin, C., Sacher, J.R., Wagner, F., Stanulla, M., Yuan, C., Sicinska, E., Giannakis, M., Ng, K., Dow, L.E., & Gutierrez, A. (2020). Exploiting the Therapeutic Interaction of WNT Pathway Activation and Asparaginase for Colorectal Cancer Therapy. Cancer Discovery, 10(11), 1690–1705. https://doi.org/10.1158/2159-8290.CD-19-1472
  25. Hu, T., & Li, C. (2010). Convergence Between Wnt-β-catenin and EGFR Signaling in Cancer. Molecular Cancer, 9(236), 1-7. https://doi.org/10.1186/1476-4598-9-236
  26. Huong, N.T.Q., Ngoc, H.T., & Anh, H.H. (2018). Major Signaling Pathways Used In Drug Development For Colorectal Cancer Targeted Therapies: A Review. DTU Journal of Science and Technology, 5(30), 99–109. https://doi.org/10.5281/ZENODO.8348636
  27. Ikeda, M., Kato, N., Kondo, S., Inaba, Y., Ueshima, K., Sasaki, M., Kanzaki, H., Ida, H., Imaoka, H., Minami, Y., Mitsunaga, S., Nishida, N., Ogasawara, S., Watanabe, K., Sahara, T., Hayata, N., Yamamuro, S., Kimura, T., Tamai, T., Kudo, M. (2023). A Phase 1b Study of E7386, A CREB-Binding Protein (CBP)/β-Catenin Interaction Inhibitor, In Combination With Lenvatinib In Patients With Advanced Hepatocellular Carcinoma. Journal of Clinical Oncology, 41(16), 4075. https://doi.org/10.1200/JCO.2023.41.16_suppl.4075
  28. Kahn, M. (2014). Can We Safely Target The WNT Pathway? Nature Reviews Drug Discovery, 13, 513–532. https://doi.org/10.1038/nrd4233
  29. Kamdem, N., Roske, Y., Kovalskyy, D., Platonov, M.O., Balinskyi, O., Kreuchwig, A., Saupe, J., Fang, L., Diehl, A., Schmieder, P., Krause, G., Rademann, J., Heinemann, U., Birchmeier, W., & Oschkinat, H. (2021). Small-Molecule Inhibitors of The PDZ Domain of Dishevelled Proteins Interrupt Wnt Signalling. Magnetic Resonance, 2, 355–374. https://doi.org/10.5194/mr-2-355-2021
  30. Kim, H., Choi, S., Yoon, J., Lim, H.J., Lee, H., Choi, J., Ro, E.J., Heo, J., Lee, W., No, K.T., & Choi, K. (2016). Small Molecule Inhibitors of The Dishevelled‐ CXXC 5 Interaction Are New Drug Candidates For Bone Anabolic Osteoporosis Therapy. EMBO Molecular Medicine, 8, 375–387. https://doi.org/10.15252/emmm.201505714
  31. Krishnamurthy, N., & Kurzrock, R. (2018). Targeting The Wnt/BETA-CATENIN PATHWAY IN CANCER: Update On Effectors and Inhibitors. Cancer Treatment Reviews, 62, 50–60. https://doi.org/10.1016/j.ctrv.2017.11.002
  32. Ko, A.H., Chiorean, E.G., Kwak, E.L., Lenz, H.-J., Nadler, P.I., Wood, D.L., Fujimori, M., Inada, T., Kouji, H., McWilliams, R.R. (2016). Final Results of A Phase Ib Dose-Escalation Study of PRI-724, A CBP/beta-catenin Modulator, Plus Gemcitabine (GEM) In Patients With Advanced Pancreatic Adenocarcinoma (APC) As Second-Line Therapy After FOLFIRINOX or FOLFOX. Journal of Clinical Oncology, 34(15), e15721. https://doi.org/10.1200/JCO.2016.34.15_suppl.e15721
  33. Kondo, S., Kawazoe, A., Iwasa, S., Yamamoto, N., Ueda, Y., Nagao, S., Kimura, T., Suzuki, I., Hayata, N., Tamai, T., Shitara, K. (2023). A Phase 1 Study of E7386, A CREB-Binding Protein (CBP)/β-catenin Interaction Inhibitor, In Patients (pts) With Advanced Solid Tumors Including Colorectal Cancer: Updated Dose-Escalation Part. Journal of Clinical Oncology, 41(4), 106. https://doi.org/10.1200/JCO.2023.41.4_suppl.106
  34. Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., Zhou, Z., Shu, G., & Yin, G. (2022). Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7(3), 1-23. https://doi.org/10.1038/s41392-021-00762-6
  35. Liu, T., Wei, Q., Jin, J., Luo, Q., Liu, Y., Yang, Y., Cheng, C., Li, Lanfang, Pi, J., Si, Y., Xiao, H., Li, Li, Rao, S., Wang, F., Yu, Jianhua, Yu, Jia, Zou, D., & Yi, P. (2020). The m6A Reader YTHDF1 promotes Ovarian Cancer Progression Via Augmenting EIF3C Translation. Nucleic Acids Research, 48(7), 3816–3831. https://doi.org/10.1093/nar/gkaa048
  36. Madan, B., & Virshup, D.M. (2015). Targeting Wnts at the Source—New Mechanisms, New Biomarkers, New Drugs. Molecular Cancer Therapeutics, 14(5), 1087–1094. https://doi.org/10.1158/1535-7163.MCT-14-1038
  37. Mahalingam, D., Carneiro, B.A., Safran, H., Powell, S.F., Coveler, A.L., Davis, E.J., Cervantes, A., Sahai, V., Steeghs, N., Huerta, M., Berlin, J., Mulcahy, M.F., Giles, F.J., Cavalcante, L., & Saeed, A. (2022). Phase 2 Study of 9-ING-41, A Small Molecule Selective Glycogen Synthase Kinase-3 Beta (GSK-3β) Inhibitor, With Gemcitabine/nab-Paclitaxel (GnP) In First-Line Advanced Pancreatic Ductal Adenocarcinoma (PDAC). Journal of Clinical Oncology, 40(4), 578. https://doi.org/10.1200/JCO.2022.40.4_suppl.578
  38. Miyoshi, Y., Iwao, K., Nawa, G., Yoshikawa, H., Ochi, T., & Nakamura, Y. (1998). Frequent Mutations In The Beta-Catenin Gene In Desmoid Tumors From Patients Without Familial Adenomatous Polyposis. Oncology Research, 10(11-12), 591–594.
  39. Morris, A., Pagare, P.P., Li, J., & Zhang, Y. (2022). Drug Discovery Efforts Toward Inhibitors of Canonical Wnt/β-Catenin Signaling Pathway In The Treatment of Cancer: A Composition-Of-Matter Review (2010–2020). Drug Discovery Today, 27, 1115–1127. https://doi.org/10.1016/j.drudis.2021.11.014
  40. Nardella, C., Visconti, L., Malagrinò, F., Pagano, L., Bufano, M., Nalli, M., Coluccia, A., La Regina, G., Silvestri, R., Gianni, S., & Toto, A. (2021). Targeting PDZ Domains As Potential Treatment For Viral Infections, Neurodegeneration and Cancer. Biology Direct, 16(15), 1-21. https://doi.org/10.1186/s13062-021-00303-9
  41. NCT01214603. (2018). A Study in Participants With Acute Leukemia. https://clinicaltrials.gov/study/NCT01214603 (accessed 12.30.23).
  42. NCT01287520. (2019). A Study of LY2090314 in Patients With Advanced or Metastatic Cancer. https://clinicaltrials.gov/study/NCT01287520 (accessed 12.30.23).
  43. NCT01302405. (2017). Safety and Efficacy Study of PRI-724 in Subjects With Advanced Solid Tumors. https://clinicaltrials.gov/study/NCT01302405 (accessed 12.30.23).
  44. NCT01351103. (2023). A Study of LGK974 in Patients With Malignancies Dependent on Wnt Ligands. https://clinicaltrials.gov/study/NCT01351103 (accessed 12.30.23).
  45. NCT01606579. (2017). Safety and Efficacy Study of PRI-724 in Subjects With Advanced Myeloid Malignancies. https://clinicaltrials.gov/study/NCT01606579 (accessed 12.30.23).
  46. NCT01632306. (2012). A Study of LY2090314 and Chemotherapy in Participants With Metastatic Pancreatic Cancer. https://clinicaltrials.gov/study/NCT01632306 (accessed 12.30.23).
  47. NCT01764477. (2017). Safety and Efficacy Study of PRI-724 Plus Gemcitabine in Subjects With Advanced or Metastatic Pancreatic Adenocarcinoma. https://clinicaltrials.gov/study/NCT01764477 (accessed 12.30.23).
  48. NCT02278133. (2017). Study of WNT974 in Combination With LGX818 and Cetuximab in Patients With BRAF-mutant Metastatic Colorectal Cancer (mCRC) and Wnt Pathway Mutations. https://clinicaltrials.gov/study/NCT02278133 (accessed 12.30.23).
  49. NCT02413853. (2017). Combination Chemotherapy and Bevacizumab With or Without PRI-724 in Treating Patients With Newly Diagnosed Metastatic Colorectal Cancer. https://classic.clinicaltrials.gov/show/NCT02413853 (accessed 12.30.23).
  50. NCT02426723. (2019). Clinical Study of CWP232291 in Relapsed or Refractory Myeloma Patients. https://classic.clinicaltrials.gov/show/NCT02426723 (accessed 12.30.23).
  51. NCT02521844. (2023). A Study to Evaluate the Safety and Tolerability of ETC-1922159 as a Single Agent and in Combination With Pembrolizumab in Advanced Solid Tumours. https://classic.clinicaltrials.gov/show/NCT02521844 (accessed 12.30.23).
  52. NCT02675946. (2022). CGX1321 in Subjects With Advanced Solid Tumors and CGX1321 With Pembrolizumab or Encorafenib + Cetuximab in Subjects With Advanced GI Tumors (Keynote 596). https://classic.clinicaltrials.gov/show/NCT02675946 (accessed 12.30.23).
  53. NCT03055286. (2021). Clinical Study of CWP232291 in Acute Myeloid Leukemia Patients. https://classic.clinicaltrials.gov/show/NCT03055286 (accessed 12.30.23).
  54. NCT03264664. (2023). Study of E7386 in Participants With Selected Advanced Neoplasms. https://classic.clinicaltrials.gov/show/NCT03264664 (accessed 12.30.23).
  55. NCT03355066. (2022). A Study Evaluating the Safety and Pharmacokinetics of Orally Administered SM08502 in Subjects With Advanced Solid Tumors. https://classic.clinicaltrials.gov/show/NCT03355066 (accessed 12.30.23).
  56. NCT03447470. (2023). Study to Evaluate the Safety and Tolerability of RXC004 in Advanced Malignancies. https://classic.clinicaltrials.gov/show/NCT03447470 (accessed 12.30.23).
  57. NCT03459469. (2023). Phase I, Open-label, Non-randomized Study to Evaluate Safety of BC2059. https://classic.clinicaltrials.gov/show/NCT03459469 (accessed 12.30.23).
  58. NCT03507998. (2020). Phase 1 Dose Escalation Study of CGX1321 in Subjects With Advanced Gastrointestinal Tumors. https://clinicaltrials.gov/study/NCT03507998 (accessed 12.30.23).
  59. NCT03678883. (2023). 9-ING-41 in Patients With Advanced Cancers. https://classic.clinicaltrials.gov/show/NCT03678883 (accessed 12.30.23).
  60. NCT03833700. (2023). A Study of E7386 in Participants With Advanced Solid Tumor Including Colorectal Cancer (CRC). https://classic.clinicaltrials.gov/show/NCT03833700 (accessed 12.30.23).
  61. NCT03901950. (2023). Phase 1 Study to Evaluate the Safety, Tolerability and Pharmacokinetic Profile of XNW7201 in Subjects With Advanced Solid Tumors. https://classic.clinicaltrials.gov/show/NCT03901950 (accessed 12.30.23).
  62. NCT04008797. (2023). A Study of E7386 in Combination With Other Anticancer Drug in Participants With Solid Tumor. https://classic.clinicaltrials.gov/show/NCT04008797 (accessed 12.30.23).
  63. NCT04218071. (2023). Actuate 1901: 9-ING-41 in Myelofibrosis. https://classic.clinicaltrials.gov/show/NCT04218071 (accessed 12.30.23).
  64. NCT04239092. (2023). 9-ING-41 in Pediatric Patients With Refractory Malignancies. https://classic.clinicaltrials.gov/show/NCT04239092 (accessed 12.30.23).
  65. Parsons, M.J., Tammela, T., & Dow, L.E. (2021). WNT as a Driver and Dependency in Cancer. Cancer Discovery, 11(10), 2413–2429. https://doi.org/10.1158/2159-8290.CD-21-0190
  66. Perry, J.M., Tao, F., Roy, A., Lin, T., He, X.C., Chen, S., Lu, X., Nemechek, J., Ruan, L., Yu, X., Dukes, D., Moran, A., Pace, J., Schroeder, K., Zhao, M., Venkatraman, A., Qian, P., Li, Z., Hembree, M., Paulson, A., He, Z., Xu, D., Tran, T.-H., Deshmukh, P., Nguyen, C.T., Kasi, R.M., Ryan, R., Broward, M., Ding, S., Guest, E., August, K., Gamis, A.S., Godwin, A., Sittampalam, G.S., Weir, S.J., & Li, L. (2020). Overcoming Wnt–β-Catenin Dependent Anticancer Therapy Resistance In Leukaemia Stem Cells. Nature Cell Biology, 22, 689–700. https://doi.org/10.1038/s41556-020-0507-y
  67. Phillips, C., Bhamra, I., Eagle, C., Flanagan, E., Armer, R., Jones, C.D., Bingham, M., Calcraft, P., Edmenson Cook, A., Thompson, B., & Woodcock, S.A. (2022). The Wnt Pathway Inhibitor RXC004 Blocks Tumor Growth and Reverses Immune Evasion in Wnt Ligand–dependent Cancer Models. Cancer Research Communications, 2(9), 914–928. https://doi.org/10.1158/2767-9764.CRC-21-0095
  68. Proffitt, K.D., Madan, B., Ke, Z., Pendharkar, V., Ding, L., Lee, M.A., Hannoush, R.N., & Virshup, D.M. (2013). Pharmacological Inhibition of the Wnt Acyltransferase PORCN Prevents Growth of WNT-Driven Mammary Cancer. Cancer Research, 73(2), 502–507. https://doi.org/10.1158/0008-5472.CAN-12-2258
  69. Rizzieri, D.A., Cooley, S., Odenike, O., Moonan, L., Chow, K.H., Jackson, K., Wang, X., Brail, L., Borthakur, G. (2016). An Open-Label Phase 2 Study of Glycogen Synthase Kinase-3 Inhibitor LY2090314 In Patients With Acute Leukemia. Leukemia & Lymphoma, 57(8), 1800–1806. https://doi.org/10.3109/10428194.2015.1122781
  70. Rodon, J., Argilés, G., Connolly, R.M., Vaishampayan, U., de Jonge, M., Garralda, E., Giannakis, M., Smith, D.C., Dobson, J.R., McLaughlin, M.E., Seroutou, A., Ji, Y., Morawiak, J., Moody, S.E., Janku, F. (2021). Phase 1 Study of Single-Agent WNT974, A First-In-Class Porcupine Inhibitor, In Patients With Advanced Solid Tumours. British Journal of Cancer, 125, 28–37. https://doi.org/10.1038/s41416-021-01389-8
  71. Salik, B., Yi, H., Hassan, N., Santiappillai, N., Vick, B., Connerty, P., Duly, A., Trahair, T., Woo, A.J., Beck, D., Liu, T., Spiekermann, K., Jeremias, I., Wang, J., Kavallaris, M., Haber, M., Norris, M.D., Liebermann, D.A., D’Andrea, R.J., Murriel, C., & Wang, J.Y. (2020). Targeting RSPO3-LGR4 Signaling for Leukemia Stem Cell Eradication in Acute Myeloid Leukemia. Cancer Cell, 38(2), 263-278.e6. https://doi.org/10.1016/j.ccell.2020.05.014
  72. Sastre-Perona, A., & Santisteban, P. (2012). Role of the Wnt Pathway in Thyroid Cancer. Frontiers in Endocrinology, 3(31), 1-10. https://doi.org/10.3389/fendo.2012.00031
  73. Sharma, M., Castro-Piedras, I., GE, S., Jr, & Pruitt, K. (2018). Dishevelled: A masterful Conductor of Complex Wnt signals. Cell Signal, 47, 52-64. https://doi.org/10.1016/j.cellsig.2018.03.004.
  74. Snyder, H. (2019). Literature Review As A Research Methodology: An Overview and Guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
  75. Soleas, J.P., D’Arcangelo, E., Huang, L., Karoubi, G., Nostro, M.C., McGuigan, A.P., & Waddell, T.K. (2020). Assembly of lung progenitors into developmentally-inspired geometry drives differentiation via cellular tension. Biomaterials, 254, 120128. https://doi.org/10.1016/j.biomaterials.2020.120128
  76. Tabernero, J., Van Cutsem, E., Garralda, E., Tai, D., De Braud, F., Geva, R., van Bussel, M.T.J., Fiorella Dotti, K., Elez, E., de Miguel, M.J., Litwiler, K., Murphy, D., Edwards, M., & Morris, V.K. (2023). A Phase Ib/II Study of WNT974 + Encorafenib + Cetuximab in Patients With BRAF V600E-Mutant KRAS Wild-Type Metastatic Colorectal Cancer. Oncologist, 28(3), 230-238. https://doi.org/10.1093/oncolo/oyad007.
  77. Tan, D.S.P., Ng, M.C.H.M., Subbiah, V., Messersmith, W.A., Strickler, J.H., Diermayr, V., Cometa, J., Blanchard, S., Nellore, R., Pendharkar, V., Gan, B.H., Rozaini, N.N., Koh, C., Sarma, S., Poh, H.M., Lezhava, A., Prativadibhayankaram, V.S. (2023). A Phase 1B Dose Escalation Study of ETC-159 In Combination With Pembrolizumab In Advanced Or Metastatic Solid Tumours. Journal of Clinical Oncology, 41(16), 2601. https://doi.org/10.1200/JCO.2023.41.16_suppl.2601
  78. Tam, B.Y., Chiu, K., Chung, H., Bossard, C., Nguyen, J.D., Creger, E., Eastman, B.W., Mak, C.C., Ibanez, M., Ghias, A., Cahiwat, J., Do, L., Cho, S., Nguyen, J., Deshmukh, V., Stewart, J., Chen, C.-W., Barroga, C., Dellamary, L., Kc, S.K., Phalen, T.J., Hood, J., Cha, S., & Yazici, Y. (2020). The CLK Inhibitor SM08502 Induces Anti-Tumor Activity And Reduces Wnt Pathway gene Expression In Gastrointestinal Cancer Models. Cancer Letters, 473, 186–197. https://doi.org/10.1016/j.canlet.2019.09.009
  79. Tomar, V.S., Patil, V., & Somasundaram, K. (2020). Temozolomide Induces Activation of Wnt/β-catenin Signaling In Glioma Cells Via PI3K/Akt Pathway: Implications In Glioma Therapy. Cell Biology and Toxicology, 36, 273–278. https://doi.org/10.1007/s10565-019-09502-7
  80. Wall, J.A., Meza-Perez, S., Scalise, C.B., Katre, A., Londoño, A.I., Turbitt, W.J., Randall, T., Norian, L.A., & Arend, R.C. (2021). Manipulating the Wnt/β-catenin Signaling Pathway To Promote Anti-Tumor Immune Infiltration Into The TME To Sensitize Ovarian Cancer To ICB Therapy. Gynecologic Oncology, 160(1), 285–294. https://doi.org/10.1016/j.ygyno.2020.10.031
  81. Wang, B., Li, X., Liu, L., & Wang, M. (2020). β-Catenin: Oncogenic Role and Therapeutic Target In Cervical Cancer. Biological Research, 53(33), 1-11. https://doi.org/10.1186/s40659-020-00301-7
  82. Yamada, K., Hori, Y., Inoue, S., Yamamoto, Y., Iso, K., Kamiyama, H., Yamaguchi, A., Kimura, T., Uesugi, M., Ito, J., Matsuki, M., Nakamoto, K., Harada, H., Yoneda, N., Takemura, A., Kushida, I., Wakayama, N., Kubara, K., Kato, Y., Semba, T., Yokoi, A., Matsukura, M., Odagami, T., Iwata, M., Tsuruoka, A., Uenaka, T., Matsui, J., Matsushima, T., Nomoto, K., Kouji, H., Owa, T., Funahashi, Y., & Ozawa, Y. (2021). E7386, a Selective Inhibitor of the Interaction between β-Catenin and CBP, Exerts Antitumor Activity in Tumor Models with Activated Canonical Wnt Signaling. Cancer Research, 81(4), 1052–1062. https://doi.org/10.1158/0008-5472.CAN-20-0782
  83. Yoon, S.-S., Manasanch, E.E., Min, C.K., Kim, J.S., Hauptschein, R.S., Choi, J., Chun, J.K. (2017). Novel Phase 1a/1b Dose-Finding Study Design of CWP232291 (CWP291) In Relapsed Or Refractory Myeloma (MM). Journal of Clinical Oncology, 35(15), TPS8058. https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS8058
  84. Zablocka, T., Kreismane, M., Pjanova, D., & Isajevs, S. (2022). Effects of BRAF V600E and NRAS Mutational Status on The Progression‑Free Survival and Clinicopathological Characteristics of Patients With Melanoma. Oncology Letters, 25, 27. https://doi.org/10.3892/ol.2022.13613
  85. Zhang, M., Weng, W., Zhang, Q., Wu, Y., Ni, S., Tan, C., Xu, M., Sun, H., Liu, C., Wei, P., & Du, X. (2018). The lncRNA NEAT1 Activates Wnt/β-Catenin Signaling and Promotes Colorectal Cancer Progression Via Interacting With DDX5. Journal of Hematology & Oncology, 11(113), 1-13. https://doi.org/10.1186/s13045-018-0656-7
  86. Zhang, Y.-L., Liu, L., Peymanfar, Y., Anderson, P., & Xian, C.J. (2021). Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. International Journal of Molecular Science, 22(13), 7210. https://doi.org/10.3390/ijms22137210
  87. Zyla, R.E., Olkhov-Mitsel, E., Amemiya, Y., Bassiouny, D., Seth, A., Djordjevic, B., Nofech-Mozes, S., & Parra-Herran, C. (2021). CTNNB1 Mutations and Aberrant β-Catenin Expression in Ovarian Endometrioid Carcinoma: Correlation With Patient Outcome. The American Journal of Surgical Pathology, 45(1), 68–76. https://doi.org/10.1097/PAS.0000000000001553