Main Article Content

Abstract

Background: Chloramphenicol eye drops have a lower stability than solid dosage forms. Hence, it is necessary to assess their stability. One stability test that can be conducted is the forced degradation approach, which involves applying stress conditions that are more severe than those used in accelerated stability testing.
Objective: This study used forced degradation to explore the stability profile of chloramphenicol ear drops.
Methods: Stability analysis was carried out using a derivative spectrophotometric instrument combined with chemometric analysis. The forced degradation study was conducted by exposing the sample to three conditions: acidic (0.1 N HCl at 80°C for 2 hours), alkaline (0.1 N NaOH at 80°C for 2 hours), and heat (90°C for 4 hours). Principal Component Analysis (PCA) and Partial Least Squares–Discriminant Analysis (PLS-DA) were utilized for the chemometric analysis.
Results: Sequential chloramphenicol observations with a zero to third derivative show a maximum wavelength of 278, 260, 234, and 292 nm. According to stability studies with forced degradation, chloramphenicol tended to degrade under alkaline and thermal conditions compared to acidic conditions. A typical grouping pattern amongst forced degradation treatments is revealed by chemometric analysis, which characterizes chloramphenicol's stability profile under different experimental settings.
Conclusion: The UV-Vis spectrophotometric approach, both non-derivative and derivative, can describe changes in chloramphenicol degradation profiles, although the specific degradation products generated remain unknown.

Keywords

Chloramphenicol forced degradation spectrophotometry chemometrics stability testing

Article Details

References

  1. Aisha, S., Kuswandi, B., & Pratoko, D. K. (2018). Pengembangan Sensor Kloramfenikol Berbasis Bovine Serum Albumin menggunakan Spektrofotometri UV (The Development of Chloramphenicol Sensor Based on Bovine Serum Albumin using Spectrophotometry UV). Pustaka Kesehatan, 6(1), 1. https://doi.org/10.19184/pk.v6i1.6609
  2. AlAani, H., & Alnukkary, Y. (2016). Stability-Indicating HPLC Method for Simultaneous Determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in Ophthalmic Solution. Advanced Pharmaceutical Bulletin, 6(1), 137–141. https://doi.org/10.15171/apb.2016.020
  3. Al-Rimawi, F., & Kharoaf, M. (2011). Analysis of Chloramphenicol and Its Related Compound 2-Amino-1-(4-nitrophenyl)propane-1,3-diol by Reversed-Phase High-Performance Liquid Chromatography with UV Detection. Chromatography Research International, 2011, 1–6. https://doi.org/10.4061/2011/482308
  4. Aminu, M., & Ahmad, N. A. (2020). Complex Chemical Data Classification and Discrimination Using Locality Preserving Partial Least Squares Discriminant Analysis. ACS Omega, 5(41), 26601–26610. https://doi.org/10.1021/acsomega.0c03362
  5. Apriliyani, S. A., Martono, Y., Riyanto, C. A., Mutmainah, M., & Kusmita, K. (2018). Validation of UV-VIS Spectrophotometric Methods for Determination of Inulin Levels from Lesser Yam (Dioscorea esculenta L.). Jurnal Kimia Sains dan Aplikasi, 21(4), 161–165. https://doi.org/10.14710/jksa.21.4.161-165
  6. Attia, K. A.-S. M., Abdel-Aziz, O., Magdy, N., & Mohamed, G. F. (2018). Development and validation of different chemometric-assisted spectrophotometric methods for determination of cefoxitin-sodium in the presence of its alkali-induced degradation product. Future Journal of Pharmaceutical Sciences, 4(2), 241–247. https://doi.org/10.1016/j.fjps.2018.08.002
  7. Chadha, R., & Bali, A. (2016). Development and Validation of Stability-Indicating Derivative Spectrophotometric Methods for Determination of Dronedarone Hydrochloride. Journal of Applied Spectroscopy, 83(2), 288–293. https://doi.org/10.1007/s10812-016-0283-4
  8. Chavhan, V., & Ghante, M. (2014). STABILITY INDICATING UV SPECTROPHOTOMETRIC METHOD DEVELOPMENT AND VALIDATION OF SIMVASTATIN IN BULK AND TABLET DOSAGE FORM. Journal of Applied Pharmacy.
  9. Depkes 2020 Farmakope Indonesia Edisi VI.pdf. (n.d.).
  10. Ehling, S., Thompson, J. J., Schimpf, K. J., Pacquette, L. H., & Haselberger, P. A. (2025). A contemporary look at the precision of modern analytical methods in food analysis and the relevance of the Horwitz equation. Journal of AOAC International, qsaf026. https://doi.org/10.1093/jaoacint/qsaf026
  11. Ermer, J. (2025). ICH Q2(R2): Validation of Analytical Procedures. In Method Validation in Pharmaceutical Analysis (pp. 351–372). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527831708.ch13
  12. González-González, O., Ramirez, I. O., Ramirez, B. I., O’Connell, P., Ballesteros, M. P., Torrado, J. J., & Serrano, D. R. (2022). Drug Stability: ICH versus Accelerated Predictive Stability Studies. Pharmaceutics, 14(11), 2324. https://doi.org/10.3390/pharmaceutics14112324
  13. Jaiswal, V. K., & Bali, A. (2024). Stability Indicating Derivative Spectrophotometric Method for Determination of Trandolapril in Bulk and in Formulation. Journal of Applied Spectroscopy, 90(6), 1376–1383. https://doi.org/10.1007/s10812-024-01681-4
  14. Kamil, F., & Hananto, A. (2023). Analysis Sentiment of Nestle Bear Brand during the Covid-19 Pandemic on Social Media Twitter. Cakrawala Repositori IMWI, 6(1), 596–619. https://doi.org/10.52851/cakrawala.v6i1.166
  15. Lisnawati, N., N.U, M. F., & Nurlitasari, D. (2019). PENENTUAN NILAI SPF EKSTRAK ETIL ASETAT DAUN MANGGA GEDONG MENGGUNAKAN SPEKTROFOTOMETRI UV - VIS. Jurnal Riset Kefarmasian Indonesia, 1(2), 157–165. https://doi.org/10.33759/jrki.v1i2.35
  16. Mitchell, S. M., Ullman, J. L., Teel, A. L., & Watts, R. J. (2015). Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin. Chemosphere, 134, 504–511. https://doi.org/10.1016/j.chemosphere.2014.08.050
  17. Musharraf, S. G., Fatima, U., & Sultana, R. (2012). Stress degradation studies and development of stability-indicating TLC-densitometry method for determination of prednisolone acetate and Chloramphenicol in their individual and combined pharmaceutical formulations. Chemistry Central Journal, 6(1), 7. https://doi.org/10.1186/1752-153X-6-7
  18. Mutasim Elimam, M., Wagiealla Shantier, S., Ahmed Gadkariem, E., & Awadalla Mohamed, M. (2015). Derivative Spectrophotometric Methods for the Analysis and Stability Studies of Colistin Sulphate. Journal of Chemistry, 2015(1), 624316. https://doi.org/10.1155/2015/624316
  19. Pratiwi, R. A., & Nandiyanto, A. B. D. (2022). How to Read and Interpret UV-VIS Spectrophotometric Results in Determining the Structure of Chemical Compounds. Indonesian Journal of Educational Research and Technology, 2(1), Article 1. https://doi.org/10.17509/ijert.v2i1.35171
  20. Redasani, V. K., Patel, P. R., Marathe, D. Y., Chaudhari, S. R., Shirkhedkar, A. A., & Surana, S. J. (2018). A REVIEW ON DERIVATIVE UV-SPECTROPHOTOMETRY ANALYSIS OF DRUGS IN PHARMACEUTICAL FORMULATIONS AND BIOLOGICAL SAMPLES REVIEW. Journal of the Chilean Chemical Society, 63(3), 4126–4134. https://doi.org/10.4067/s0717-97072018000304126
  21. Roberto de Alvarenga Junior, B., & Lajarim Carneiro, R. (2019). Chemometrics Approaches in Forced Degradation Studies of Pharmaceutical Drugs. Molecules, 24(20), 3804. https://doi.org/10.3390/molecules24203804
  22. Rohmah, S. A. A., Muadifah, A., & Martha, R. D. (2021). Validasi Metode Penetapan Kadar Pengawet Natrium Benzoat pada Sari Kedelai di Beberapa Kecamatan di Kabupaten Tulungagung Menggunakan Spektrofotometer Uv-Vis. Jurnal Sains dan Kesehatan, 3(2), 120–127. https://doi.org/10.25026/jsk.v3i2.265
  23. Singhal, K. K., Mukim, M. D., Dubey, C. K., & Nagar, J. C. (2020). An Updated Review on Pharmacology and Toxicities Related to Chloramphenicol. Asian Journal of Pharmaceutical Research and Development, 8(4), 104–109. https://doi.org/10.22270/ajprd.v8i4.671
  24. Vyas, A. J., Jadav, C. D., Patel, A. I., Patel, A. B., Shah, S. R., Sheth, D., & Dholakia, S. (2023). Review on Stability Indicating Assay Method or Forced Degradation Study: Strategy and Regulatory Consideration. Asian Journal of Pharmaceutical Analysis, 13(2), 131–139. https://doi.org/10.52711/2231-5675.2023.00022
  25. Yugatama, A., Nurmalinda, R., Rohmani, S., Ermawati, D. E., & Prihapsara, F. (2019). Effect of Temperature and Length of Storage on Chloramphenicol Eye Drop's Concentration. IOP Conference Series: Materials Science and Engineering, 578(1), 012055. https://doi.org/10.1088/1757-899X/578/1/012055