Main Article Content

Abstract

Background: Diabetes mellitus (DM) is among the diseases with high morbidity and mortality The pathogenesis of DM involves pancreatic ß-cell damage or insulin sensitivity disorder that result in hyperglycemia. Tapak liman (Elephantopus scaber L) is known to have high flavonoid content. Flavonoids are antioxidants that play a role in reducing pancreatic ß-cell damage or damage to other tissues, which potentially reduce blood glucose levels.
Objective: To determine the hypoglycemic effects of tapak liman using the DM rat models.
Methods: Twenty-eight Wistar albino rats (Rattus novergicus) were divided into four groups: the normal control group (KKn), not induced by streptozotocin-nicotinamide (STZ-NA) intraperitoneal; negative control group (KK-), induced by STZ-NA; treatment group 1 (KP1), induced by STZ-NA and 150 mg/kg body weight of tapak liman plant extract; and the treatment group 2 (KP2), induced by STZ-NA and 300 mg/kg body weight of tapak liman. Blood glucose levels were measured on the 7th day after STZ-NA induction and the 28th day after the administration of tapak liman plant extract. The results were analyzed for statistical significance.
Results: There was a significant decrease in blood glucose levels in KP1 and KP2 (p= 0.05). The decrease in blood glucose in KP1 had not reached normal levels compared to KP2.
Conclusion: Administration of tapak liman plant extract at a dose of 300 mg/kg body weight in DM rat models reduced blood glucose levels to normal.

Keywords

Elephantopus scaber L flavanoid DM rat model

Article Details

How to Cite
Sholikah, T. A., Wulandari, S., Ariesta, I., Hakim, M. A. R., & Hafizhan, M. (2020). The hypoglicemic effects of tapak liman (Elephantopus scaber L) plant extract on albino rat (Rattus novergicus) models of diabetes mellitus. JKKI : Jurnal Kedokteran Dan Kesehatan Indonesia, 11(2), 172–179. https://doi.org/10.20885/JKKI.Vol11.Iss2.art10

References

  1. Federation ID. IDF DIABETES ATLAS Seventh Edition. 2015.
  2. Federation ID. IDF Diabetes Atlas Eighth edition 2017. 2017.
  3. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement 1):81–90.
  4. Chawla A, Chawla R, Jaggi S. Microvascular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian Journal of Endocrinology and Metabolism. 2016;20(4):547–51.
  5. Marín-peñalver JJ, Martín-timón I, Sevillano-collantes C, del Cañizo-gómez FJ. Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes. 2016;7(17):354–95.
  6. Verma S, Gupta M, Popli H, Aggarwal G. Diabetes mellitus treatment using herbal drugs. International Journal of Phytomedicine. 2018;10(1):1–10.
  7. Kabeer FA, Prathapan R. Phytopharmacological profile of Elephantopus scaber. Pharmacologia. 2014;5(8):272–85.
  8. Daisy P, Jasmine R, Ignacimuthu S, Murugan E. A novel steroid 1 from Elephantopus scaber L. an ethnomedicinal plant with antidiabetic activity. Phytomedicine. 2009;16:252–7.
  9. Sarian MN, Ahmed QU, Mat So’ad SZ, Alhassan AM, Murugesu S, Perumal V, et al. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International. 2017;1–14.
  10. Masiello P. Animal models of type 2 diabetes with reduced pancreatic B -cell mass. The International Journal of Biochemistry & Cell Biology. 2006;38:873–93.
  11. Chang K-C, Tseng C-D, Chou T-F, Cho Y-L, Chi T-C, Su M-J, et al. Arterial stiffening and cardiac hypertrophy in a new rat model of type 2 diabetes. European Journal of Clinical Investigation. 2006;36:1–7.
  12. Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (Review). Acta Physiologica Hungarica. 2014;101(4):408–20.
  13. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research. 2001;50:536–46.
  14. Szkudelski T. Streptozotocin – nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental Biology and Medicine. 2012;237:481–90.
  15. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51:216–26.
  16. Francisqueti FV, Chiaverni LCT, Dos Santos KC, Minatel IO, Ronchi CB, Ferron AJT, et al. The role of oxidative stress on the pathophysiology of metabolic syndrome. Revista da Associação Médica Brasileira. 2017;63(1):85–91.
  17. Mokhtari D, Myers JW, Welsh N. The MAPK kinase kinase-1 is essential for stress-induced pancreatic islet cell death. Endocrinology. 2008;149(6):3046–53.
  18. Cheon H, Cho JM, Kim S, Baek S, Lee M, Kim K, et al. Role of JNK activation in pancreatic B-cell death by streptozotocin. Molecular and Cellular Endocrinology [Internet]. 2010;321:131–7. Available from: http://dx.doi.org/10.1016/j.mce.2010.02.016
  19. Zou J, Yu X, Qu S, Li X, Jin Y, Sui D. Protective effect of total flavonoids extracted from the leaves of Murraya paniculata (L.) Jack on diabetic nephropathy in rats. Food and Chemical Toxicology [Internet]. 2014;64:231–7. Available from: http://dx.doi.org/10.1016/j.fct.2013.11.043
  20. Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB. Hepatoprotective activity of Elephantopus scaber on alcohol-induced liver damage in mice. Evidence-Based Complementary and Alternative Medicine. 2012;2012:1–8.
  21. Daisy P, Priya CE, Vargese L. A study on the regenerative potential of the root and leaf extracts of Elephantopus scaber L.: An antidiabetic approach. African Journal of Pharmacy and Pharmacology. 2011;5(16):1832–7.
  22. Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicologyl. 2013;51:15–25.
  23. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutrition & Metabolism (Lond). 2015;12(60):1–20.
  24. Treml J, Smejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Reviews in Food Science and Food Safety. 2016;15:720–38.
  25. Cherrak SA, Mokhtari-soulimane N, Berroukeche F, Bensenane B, Cherbonnel A, Merzouk H, et al. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLoS One. 2016;1–21.
  26. Jasmine R, Ganesh Kumar A, Rajaram R. Probing the mechanism of the anti-diabetic potential of a terpenoid from Elephantopus scaber L., an Indian ethnomedicinal plant in STZ diabetic rats- in vivo and in silico analysis. Indian Journal of Biochemistry and Biophysics. 2018;55:384–8.
  27. Derosa G, Maffioli P. Peroxisome proliferator-activated receptor- ? (PPAR-?) agonists on glycemic control, lipid profile and cardiovascular risk. Current Molecular Pharmacology. 2012;5(2):272–81.