Main Article Content

Abstract

As the prevalence of dementia increases from year to year, the discovery and invention of preventive measures are growing increasingly urgent. Banana peels contain tryptophan, an amino acid that plays a substantial role in the mechanism of dementia prevention, yet under-utilized for this purpose. Tryptophan acts as a precursor to serotonin and kynurenine. The serotonin metabolite, 5-hydroxyindoleacetate or 5-hydroxyindoleacetic acid (5-HIAA), can degrade amyloid-ß (Aß) oligomers, a peptide group of 36–43 amino acids derived from amyloid precursor protein found in people with Alzheimer's disease. The degradation of brain cells through the increase of neprilysin (NEP) and melatonin inhibits glycogen synthase kinase-3ß (GSK3ß) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?ß) by reducing the decrease in peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1). Meanwhile, in the kynurenine pathway, kynurenic acid (KYNA) also induces the NEP gene, thus preventing Aß.

Keywords

Banana Peel Tryptophan Dementia

Article Details

How to Cite
Lustikaiswi, D. K., Yuliani, S., Annura, R., & Rahmadani, E. (2021). Tryptophan in banana peel (Musa paradisiaca) as an anti-dementia alternative treatment: A narrative review. JKKI : Jurnal Kedokteran Dan Kesehatan Indonesia, 12(2), 175–181. https://doi.org/10.20885/JKKI.Vol12.Iss2.art11

References

  1. WHO. Dementia 2019. https://www.who.int/news-room/fact-sheets/detail/dementia
  2. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63-75.e2.
  3. ADI. Dementia facts & figures. https://www.alzint.org/about/dementia-facts-figures/
  4. Ponjoan A, Garre-Olmo J, Blanch J, Fages E, Alves-Cabratosa L, Martí-Lluch R, et al. Epidemiology of dementia: Prevalence and incidence estimates using validated electronic health records from primary care. Clinical Epidemiology. 2019;11:217–28.
  5. Alzheimer’s Indonesia. Statistik tentang Demensia.. https://alzi.or.id/statistik-tentang-demensia/
  6. Raz L, Knoefel J, Bhaskar K. The neuropathology and cerebrovascular mechanisms of dementia. Journal ofCerebral Blood Flow and Metabolism 2016;36(1):172–86.
  7. Hall B, Mak E, Cervenka S, Aigbirhio FI, Rowe JB, O’Brien JT. In vivo tau PET imaging in dementia: Pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Research Review. 2017;36:50–63.
  8. Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacology Reports. 2015;67(2):195–203.
  9. Heppner FL, Ransohoff RM, Becher B. Immune attack: The role of inflammation in alzheimer disease. Nature Review Neuroscience. 2015;16(6):358–72.
  10. Hugo J, Ganguli M. Dementia and cognitive impairment. Clin Geriatr Med. 2014;30(3):421–42.
  11. Rhodes-Kropf J, Cheng H, Castillo EH, Fulton AT. Managing the patient with dementia in long-term care. Clinics in Geriatric Medicine. 2011;27(2):135–52.
  12. Folch J, Busquets O, Ettcheto M, Sánchez-López E, Castro-Torres RD, Verdaguer E, et al. Memantine for the treatment of dementia: A review on its current and future applications. Journal of Alzheimers Disease. 2018;62(3):1223–40.
  13. Amini Khoozani A, Birch J, Bekhit AE-DA. Production, application and health effects of banana pulp and peel flour in the food industry. Journal of Food Science and Technology. 2019;56(2):548–59.
  14. Pereira A, Maraschin M. Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. Journal of Ethnopharmacology. 2015;160:149–63.
  15. Singh JP, Kaur A, Shevkani K, Singh N. Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. Journal of Food Science and Technology. 2016;53(11):4056–66.
  16. Heysieattalab S, Sadeghi L. Effects of delphinidin on pathophysiological signs of nucleus basalis of meynert lesioned rats as animal model of alzheimer disease. Neurochemical Research. 2020;45(7):1636–46.
  17. Zhang Y, Li Y, Wang Y, Wang G, Mao L, Zhang D, et al. Effects of resveratrol on learning and memory in rats with vascular dementia. Molecular Medicine Reports. 2019. http://www.spandidos-publications.com/10.3892/mmr.2019.10723
  18. Khawas P, Deka SC. Comparative nutritional, functional, morphological, and diffractogram study on culinary banana (Musa ABB) Peel at various stages of development. International Journal of Food Properties. 2016;19(12):2832–53.
  19. Klein C, Roussel G, Brun S, Rusu C, Patte-Mensah C, Maitre M, et al. 5-HIAA induces neprilysin to ameliorate pathophysiology and symptoms in a mouse model for alzheimer’s disease. Acta Neuropathologica Communication. 2018;6(1):136.
  20. Ansari Dezfouli M, Zahmatkesh M, Farahmandfar M, Khodagholi F. Melatonin protective effect against amyloid ß-induced neurotoxicity mediated by mitochondrial biogenesis; Involvement of hippocampal Sirtuin-1 signaling pathway. Physiology and Behavior. 2019;204:65–75.
  21. Aboul-Enein AM, Salama ZA, Gaafar AA, Aly HF. Identification of phenolic compounds from banana peel (Musa paradaisica L.) as antioxidant and antimicrobial agents. Journal of Chemical and Pharmaceutical Research. 2016;8:46–55.
  22. Happi Emaga T, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chemisty. 2007;103(2):590–600.
  23. Kumar KPS, Bhowmik D, Duraivel S, Umadevi M. Traditional and medicinal uses of banana. Pharmacognosy. 2012;1(3):15.
  24. Wurtman RJ, Wurtman JJ, Regan MM, McDermott JM, Tsay RH, Breu JJ. Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. American Journal of Clinical Nutrition. 2003;77(1):128–32.
  25. Del Angel-Meza AR, Dávalos-Marín AJ, Ontiveros-Martinez LL, Ortiz GG, Beas-Zarate C, Chaparro-Huerta V, et al. Protective effects of tryptophan on neuro-inflammation in rats after administering lipopolysaccharide. Biomedicine and Pharmacotherapy. 2011;65(3):215–9.
  26. Ano Y, Yoshino Y, Kutsukake T, Ohya R, Fukuda T, Uchida K, et al. Tryptophan-related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive decline. Aging. 2019;11(10):2949–67.
  27. Musumeci G, Castrogiovanni P, Szychlinska MA, Imbesi R, Loreto C, Castorina S, et al. Protective effects of high tryptophan diet on aging-induced passive avoidance impairment and hippocampal apoptosis. Brain Research Bulletin. 2017;128:76–82.
  28. Noristani HN, Verkhratsky A, Rodríguez JJ. High tryptophan diet reduces CA1 intraneuronal ß-amyloid in the triple transgenic mouse model of Alzheimer’s disease: Tryptophan reduces ß-amyloidosis in AD. Aging Cell. 2012;11(5):810–22.
  29. Safitrah L, Setyowati DN, Astriana BH. Efektivitas ekstrak kulit pisang kepok (Musa balbisiana Colla) untuk menurunkan kanibalisme pada udang Vaname (Litopenaeus vannamei). Journal of Marine Science and Technology. 2020;13(1):36–44.
  30. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annual Review of Medicine. 2009;60:355–66.
  31. Jayamohanan H, Kumar MKM, P AT. 5-HIAA as a Potential biological marker for neurological and psychiatric disorders. Advanced Pharmaceutical Bulletin. 2019;9(3):374–81.
  32. Marr RA, Hafez DM. Amyloid-beta and Alzheimer’s disease: The role of neprilysin-2 in amyloid-beta clearance. Front Aging Neuroscience. 2014;6:187.
  33. Zhang H, Liu D, Wang Y, Huang H, Zhao Y, Zhou H. Meta-analysis of expression and function of neprilysin in Alzheimer’s disease. Neuroscience Letters. 2017;657:69–76.
  34. Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci. 2003;23(6):1992–6.
  35. Nalivaeva NN, Belyaev ND, Zhuravin IA, Turner AJ. The Alzheimer’s amyloid-degrading peptidase, Neprilysin: Can we control it? Int J Alzheimers Dis. 2012;2012:1–12.
  36. Wang N, Jia Y, Zhang B, Li Y, Murtaza G, Huang S, et al. Kai-Xin-San, a Chinese herbal decoction, accelerates the degradation of ß-Amyloid by Enhancing the expression of Neprilysin in Rats. Evid-Based Complement Altern Med ECAM. 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054802/
  37. Liu Y, Studzinski C, Beckett T, Murphy MP, Klein RL, Hersh LB. Circulating neprilysin clears brain amyloid. Molecular and Cellular Neuroscience. 2010;45(2):101–7.
  38. Kanemitsu H, Tomiyama T, Mori H. Human neprilysin is capable of degrading amyloid ß peptide not only in the monomeric form but also the pathological oligomeric form. Neuroscience Letter. 2003;350(2):113–6.
  39. Hersh L, Rodgers D. Neprilysin and Amyloid Beta peptide degradation. Current Alzheimer Research. 2008;5(2):225–31.
  40. Badawy AA-B. Tryptophan metabolism: A versatile area providing multiple targets for pharmacological intervention. Egyptian Journal of Basic Clinical Pharmacology. 2019;9: 10.32527/2019/101415.
  41. Chinchalongporn V, Shukla M, Govitrapong P. Melatonin ameliorates Aß 42 -induced alteration of ßAPP-processing secretases via the melatonin receptor through the Pin1/GSK3ß/NF-?B pathway in SH-SY5Y cells. Journal of Pineal Research. 2018;64(4):e12470.
  42. Chatterjee P, Zetterberg H, Goozee K, Lim CK, Jacobs KR, Ashton NJ, et al. Plasma neurofilament light chain and amyloid-ß are associated with the kynurenine pathway metabolites in preclinical Alzheimer’s disease. Journal of Neuroinflammation. 2019;16(1):186.
  43. Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, et al. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology. 2017;112:373–88.
  44. Parrott JM, O’Connor JC. Kynurenine 3-Monooxygenase: An Influential mediator of neuropathology. Front Psychiatry. 2015;6. https://doi.org/10.3389/fpsyt.2015.00116.
  45. Zwilling D, Huang S-Y, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu H-Q, et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell. 2011;145(6):863–74.
  46. Klein C, Patte-Mensah C, Taleb O, Bourguignon J-J, Schmitt M, Bihel F, et al. The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology. 2013;70:254–60.
  47. Meek AR, Simms GA, Weaver DF. Searching for an endogenous anti-Alzheimer molecule: Identifying small molecules in the brain that slow Alzheimer disease progression by inhibition of ß-amyloid aggregation. Journal of Psychiatry and Neuroscience.2013;38(4):269–75.
  48. Giil LM, Midttun Ø, Refsum H, Ulvik A, Advani R, Smith AD, et al. Kynurenine pathway metabolites in Alzheimer’s disease. Journal of Alzheimers Disease. 2017;60(2):495–504.
  49. Gulaj E, Pawlak K, Bien B, Pawlak D. Kynurenine and its metabolites in Alzheimer’s disease patients. Advaces in Medical Sience.2010;55(2):204–11.