Main Article Content


Background: The filariasis elimination program in Indonesia has been conducted, but new cases and some chronic cases are still often found.
Objective: This study aims to determine levels of endemicity and to identify filarial worm species in filariasis cases and s and their surrounding communities by using microscopic examination, polymerase chain reaction (PCR), and to examine levels of infection in vectors mosquito by surgery and PCR. Also to to determine that Ae. aegypti can act as vector of filariasis.
Methods: This study was conducted at 10 locations in Pekalongan Regency, Central Java Province, with a cross sectional design. Intravenous blood sampling was conducted on 102 respondents consisting of 10 elephantiasis patients and 92 non-elephantiasis patients at night, starting at 8 pm, then examined microscopically and PCR. Mosquitoes in this study were collected by using a human landing collection method for 12 hours from 6 pm to 6 am by volunteers. Artificial infection of microfilaria W. bancrofti was held against Cx. quinquefasciatus and Ae.aegypti from laboratory collection.
Results: Results of this study found that there were 5.729 of mosquitos, consisting of 8 species, namely Culex quinquefasciatus, Culex vishnui, Culex tritaeniorhynchus, Aedes aegypti, Aedes albopictus, Anopheles subpictus, Anopheles vagus, and Armigeres kesseli. Microfilarial (mf) rate was 0.89%, and and the blood PCR showed infection rate of 3.92% and the blood PCR showed infection rate of 3.92%. No larva was found in female mosquito dissection. The PCR results showed that the infection rate was 9.10% in Ae. aegypty pool respectively. Artificial infection results was negative both dissecting microscopis and PCR.
Conclusion: This study revealed that the locations were low of filariasis endemicity. The mf rate was less than 1%, and there was a moderate density to high density of microfilaria in the patients. The low level of infection rates in mosquito is suggested as an alert to its potential transmission.


Culex quinquefasciatus filariasis potential vector Indonesia Pekalongan

Article Details

How to Cite
Istianah, S., Mulyaningsih, B., Umniyati, S. R., & Arguni, E. (2021). Aedes aegypti as potential vector of filariasis in Pekalongan, Central Java Province, Indonesia. JKKI : Jurnal Kedokteran Dan Kesehatan Indonesia, 12(1), 44–51.


  1. Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklöv J. Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS ONE. 2014;9(3).
  2. Nutman TB. Lymphatic filariasis: Progress and challenges in the move toward elimination. In: Fong IW, editor. Challenges in infectious diseases. New York: Springer Science+Bussiness Media; 2013. p. 1–319.
  3. Khan AM, Dutta P, Das S, Pathak AK, Sarmah P, Hussain ME, et al. Microfilarial periodicity of Wuchereria bancrofti in Assam, Northeast India. Journal of Vector Borne Diseases. 2015;52(3):208–12.
  4. Ramadhani T, Hadi UK, Soviana S, Irawati Z. Transmisi strain Wuchereria bancrofti periodik nokturnal oleh Culex quinquefasciatus di Kota Pekalongan. Acta VETERINARIA Indonesiana. 2019;7(2):1–8.
  5. Kementerian Kesehatan Republik Indonesia. Profil Kesehatan Indonesia Tahun 2019. Kementrian Kesehatan Repoblik Indonesia 42, (Kementerian Kesehatan Republik Indonesia, 2020)
  6. Jateng DKP. Profil kesehatan Provinsi Jawa Tengah tahun 2018. Semarang: Dinas Kesehatan Provinsi Jawa Tengah, 2019.
  7. Kurniawan R, Yudianto Y, Hardhana B, Soenardi TA. Profil kesehatan Indonesia tahun 2016 (Health Statistics). Kementerian Kesehatan RI, 2017. p:431.
  8. Goel TC, Goel A. Lymphatic filariasis. Vol. 17, Springer Nature, 2016. p:36.
  9. Syahribulan, Al E. Waktu aktivitas menghisap darah nyamuk Aedes Aegypti dan Aedes Albopictus di desa Pa’ Lanassang Kelurahan Barombong Makassar Sulawesi Selatan. Jurnal Ekologi Kesehatan. 2012;11(4):306–14.
  10. Nasution S. Comparative study of Filarial detection by microscopic examination and serological assay utilizing BMR1 and BMXSP recombinant antigens for evaluation of Filariasis Elimination Program at Kampung Sawah and Pamulang, South Tangerang District, Banten. Indonesian Journal of Tropical and Infectious Disease. 2015;5(6):156.
  11. Beng TS, Ahmad R, Hisam RSR, Heng SK, Leaburi J, Ismail Z, et al. Molecular xenomonitoring of filarial infection in malaysian mosquitoes under the national program for elimination of lymphatic filariasis. Southeast Asian Journal of Tropical Medicine and Public Health. 2016;47(4):617–24.
  12. Rattanarithikul R, Harrison BA, Harbach RE. Illustrated keys to the mosquitoes of Thailand. The Southeast Asian Journal Tropmed and Public Health. 2006;37(Supplement 2).
  13. Irawan AS, Boesri H, Nugroho SS. Program nasional untuk eliminasi Filariasis limfatik: Studi kasus di kabupaten Pekalongan, Jawa Tengah. Vektora : Jurnal Vektor dan Reservoir Penyakit. 2018;10(2):95–102.
  14. Ichimori K, King JD, Engels D, Yajima A, Mikhailov A, Lammie P, et al. Global programme to eliminate lymphatic Filariasis: The processes underlying programme success. PLoS Neglected Tropical Diseases. 2014;8(12).
  15. Kwansa-Bentum B, Aboagye-Antwi F, Otchere J, Wilson MD, Boakye DA. Implications of low-density microfilariae carriers in Anopheles transmission areas: Molecular forms of Anopheles gambiae and Anopheles funestus populations in perspective. Parasites and Vectors. 2014;7(1):1–8.
  16. Korte RL, Fontes G, Camargo J de SAA, da Rocha EMM, de Araújo EAC, De Oliveira MZ, et al. Survey of bancroftian filariasis infection in humans and culex mosquitoes in the western Brazilian Amazon region: Implica- tions for transmission and control. Revista da Sociedade Brasileira de Medicina Tropical. 2013;46(2):214–20.
  17. Simonsen PE, Mwakitalu ME. Urban lymphatic filariasis. Parasitology Research. 2013;112(1):35–44.
  18. Ramesh A, Cameron M, Spence K, Hoek Spaans R, Melo-Santos MAV, Paiva MHS, et al. Development of an urban molecular xenomonitoring system for lymphatic filariasis in the Recife Metropolitan Region, Brazil. PLoS Neglected Tropical Diseases. 2018;12(10):1–24.
  19. Astuti RRUNW, Poerwanto SH, Handayani NSN, Hadisusanto S. Abundance and periodicity of Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) as early indicator of filariasis transmission in Pekalongan, Central Java, Indonesia. AIP Conference Proceedings. 2016;1744.
  20. Portunasari WD, Kusmintarsih ES, Riwidiharso E. Survei Nyamuk Culex spp. sebagai Vektor Filariasis di desa Cisayong, Kecamatan Cisayong, Kabupaten Tasikmalaya. Biosfera. 2017;33(3):142.