Main Article Content
Abstract
This study examines how public perceptions of Anies Baswedan are shaped through YouTube, Twitter, and Google, employing text, network, and sentiment analysis with InfraNodus. Data was collected through each platform's official API with a focus on the keyword "Anies Baswedan." The findings reveal that informative narratives dominate YouTube, while Twitter serves as a space for emotional expression, characterized by a high level of positive sentiment. At the same time, Google reflects information-seeking behavior with a more balanced sentiment distribution. These findings reveal that each platform plays a unique role in shaping political perceptions: YouTube archives and disseminates documentation, and Twitter serves as a forum for debate and support. At the same time, Google functions as an aggregator of opinions from various sources. This study offers new insights into how cross-platform interactions are influenced not only by the content of messages but also by communication patterns and the digital ecosystem in which conversations occur, thereby strengthening our understanding of how political narratives evolve in the digital age.
Keywords
Article Details
Copyright (c) 2025 Herman Lawelai, Achmad Nurmandi, Harry Fajar Maulana, Hasse Jubba

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Alim, A. S., & Rahmawati, D. E. (2021). Komunikasi Politik Anies Baswedan Melalui Sosial Media Twitter. Jurnal Academia Praja, 4(2), 441–453. https://doi.org/10.36859/jap.v4i2.334
- Alsinet, T., Argelich, J., Béjar, R., & Cemeli, J. (2019). A distributed argumentation algorithm for mining consistent opinions in weighted Twitter discussions. Soft Computing, 23(7), 2147–2166. https://doi.org/10.1007/s00500-018-3380-x
- Angus, D., & Wiles, J. (2018). Social semantic networks: Measuring topic management in discourse using a pyramid of conceptual recurrence metrics. Chaos, 28(8). https://doi.org/10.1063/1.5024809
- Anom, E., Vina, E., & Samani, M. C. (2024). Political Communication Strategy in the 2024 Indonesia’s Presidential Election. Jurnal Komunikasi: Malaysian Journal of Communication, 40(2), 296–309. https://doi.org/10.17576/JKMJC-2024-4002-17
- Arman, Z. R., & McClurg, S. (2024). Exploring the Relationship Between Televised Presidential Debate and Twitter: A Network Analysis of Intermedia Agenda Setting. Communication Studies, 75(6), 861–879. https://doi.org/10.1080/10510974.2024.2342062
- Bajari, A., Koswara, I., Istiqomah, R. N., & Erlandia, D. R. (2021). Hatenography On Twitter During the Covid-19 Pandemic in Indonesia: Hate Speech Case Against Anies Baswedan. Review of International Geographical Education Online, 11(5), 68–78. https://doi.org/10.48047/rigeo.11.05.07
- Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
- Bruns, A., & Stieglitz, S. (2012). Quantitative Approaches to Comparing Communication Patterns on Twitter. Journal of Technology in Human Services, 30(3–4), 160–185. https://doi.org/10.1080/15228835.2012.744249
- Budi, A., & Pamungkas, W. A. (2020). Partisanship in crisis: Public response to covid-19 pandemic in Indonesia. Jurnal Ilmu Sosial Dan Ilmu Politik, 24(1), 15–32. https://doi.org/10.22146/JSP.56443
- Capano, G., Galanti, M. T., & Barbato, G. (2023). When the political leader is the narrator: the political and policy dimensions of narratives. Policy Sciences, 56(2), 233–265. https://doi.org/10.1007/s11077-023-09505-6
- Chandrasekar, A., Clark, S. E., Martin, S., Vanderslott, S., Flores, E. C., Aceituno, D., Barnett, P., Vindrola-Padros, C., & Vera San Juan, N. (2024). Making the most of big qualitative datasets: a living systematic review of analysis methods. Frontiers in Big Data, 7, 1455399. https://doi.org/10.3389/fdata.2024.1455399
- Dayter, D. (2015). Small stories and extended narratives on Twitter. Discourse, Context and Media, 10, 19–26. https://doi.org/10.1016/j.dcm.2015.05.003
- Dongo, I., Cardinale, Y., Aguilera, A., Martinez, F., Quintero, Y., Robayo, G., & Cabeza, D. (2021). A qualitative and quantitative comparison between Web scraping and API methods for Twitter credibility analysis. International Journal of Web Information Systems, 17(6), 580–606. https://doi.org/10.1108/IJWIS-03-2021-0037
- Gamal, D., Alfonse, M., El-Horbaty, E.-S. M., & Salem, A.-B. M. (2019). Implementation of Machine Learning Algorithms in Arabic Sentiment Analysis Using N-Gram Features. Procedia Computer Science, 154, 332–340. https://doi.org/10.1016/j.procs.2019.06.048
- Gerber, A. (2022). The Detection of Conversation Patterns in South African Political Tweets Through Social Network Analysis. In J. E., G. A.J., V. S., & P. A. (Eds.), Communications in Computer and Information Science: Vol. 1551 CCIS (pp. 15–31). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-95070-5_2
- Gil-Ramírez, M., Gómez-De-travesedo-rojas, R., & Almansa-Martínez, A. (2020). Political debate on youtube: Revitalization or deterioration of democratic deliberation? Profesional de la Informacion, 29(6), 1–19. https://doi.org/10.3145/epi.2020.nov.38
- Gooch, A. (2018). Ripping Yarn: Experiments on Storytelling by Partisan Elites. Political Communication, 35(2), 220–238. https://doi.org/10.1080/10584609.2017.1336502
- Hall, M., Mazarakis, A., Peters, I., Chorley, M., Caton, S., Mai, J. E., & Strohmaier, M. (2016). Following user pathways: Cross platform and mixed methods analysis in social media studies. Conference on Human Factors in Computing Systems - Proceedings, 07-12-May-2016, 3400–3407. https://doi.org/10.1145/2851581.2856500
- Haris, A., Amalia, A., & Hanafi, K. (2022). Citra Politik Anies Baswedan Di Media Massa. Ilmu Komunikasi, 7 No.2(2), 1–10. http://jurnal.univrab.ac.id/index.php/cmv/article/view/2631
- Hewage, T. N., Halgamuge, M. N., Syed, A., & Ekici, G. (2018). Review: Big data techniques of google, Amazon, Facebook and Twitter. Journal of Communications, 13(2), 94–100. https://doi.org/10.12720/jcm.13.2.94-100
- Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE, 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679
- Jaidka, K., Eichstaedt, J., Giorgi, S., Schwartz, H. A., & Ungar, L. H. (2021). Information-seeking vs. sharing: Which explains regional health? An analysis of Google Search and Twitter trends. Telematics and Informatics, 59, 101540. https://doi.org/10.1016/j.tele.2020.101540
- Jayasudha, J., & Thilagu, M. (2022). A Survey on Sentimental Analysis of Student Reviews Using Natural Language Processing (NLP) and Text Mining. In P. M., D. S., P. M.R., B. P.K., T. G.A., C. S., & C. C. C.A. (Eds.), Communications in Computer and Information Science: Vol. 1737 CCIS (pp. 365–378). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-23233-6_27
- Lawelai, H., Sadat, A., & Suherman, A. (2022). Democracy and Freedom of Opinion in Social Media: Sentiment Analysis on Twitter. PRAJA: Jurnal Ilmiah Pemerintahan, 10(1), 40–48. http://jurnal.umsrappang.ac.id/praja/article/view/585
- Lestanata, Y. (2023). Anies Rasyid Baswedan’S Political Communication in Facing the 2024 Election. Jurnal Ilmiah Peuradeun, 11(3), 1155–1172. https://doi.org/10.26811/peuradeun.v11i3.952
- Luth, Maswati, R., & Baharuddin, T. (2023). Online political trust in Anies Baswedan as a candidate for the President of Indonesia 2024. In Environmental Issues and Social Inclusion in a Sustainable Era (pp. 317–322). Routledge. https://doi.org/10.1201/9781003360483-36
- Lybecker, D. L., McBeth, M. K., Husmann, M. A., & Pelikan, N. (2015). Do New Media Support New Policy Narratives? the Social Construction of the U.S.-Mexico Border on YouTube. Policy and Internet, 7(4), 497–525. https://doi.org/10.1002/poi3.94
- Moya Sánchez, M., & Herrera Damas, S. (2015). How can twitter contribute to more advanced political communication? Arbor, 191(774). https://doi.org/10.3989/arbor.2015.774n4012
- Naskar, D., Singh, S. R., Kumar, D., Nandi, S., & De La Rivaherrera, E. O. (2020). Emotion Dynamics of Public Opinions on Twitter. ACM Transactions on Information Systems, 38(2), 1–24. https://doi.org/10.1145/3379340
- Nasution, F. A., Saraan, M. I. K., & Ramadhan, A. (2024). Political artifacts from the Jakarta International Stadium as local leadership impression management. Research Journal in Advanced Humanities, 5(3), 49–66. https://doi.org/10.58256/qzk7gk14
- Nuraniyah, N. N. (2024). Indonesia’s 2024 Presidential Election: Sectarianism Out, Dynasty In, Democracy Tethered. Asia Policy, 19(4), 96–107. https://doi.org/10.1353/asp.2024.a942836
- Paranyushkin, D. (2019). InfraNodus: Generating insight using text network analysis. The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, 3584–3589. https://doi.org/10.1145/3308558.3314123
- Persson, G. (2017). Love, Affiliation, and Emotional Recognition in #kämpamalmö:— The Social Role of Emotional Language in Twitter Discourse. Social Media and Society, 3(1). https://doi.org/10.1177/2056305117696522
- Puschmann, C. (2019). Beyond the Bubble: Assessing the Diversity of Political Search Results. Digital Journalism, 7(6), 824–843. https://doi.org/10.1080/21670811.2018.1539626
- Rasyid, S. B. A., Nurmandi, A., Suswanta, Mutiarin, D., & Salahudin. (2021). Public Communication of Local Government Leaders: A Case Study of Three Major Governors in Indonesia. In A. T. (Ed.), Advances in Intelligent Systems and Computing (Vol. 1352, pp. 487–497). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-71782-7_43
- Richey, S., & Taylor, J. B. (2017). Google and democracy: Politics and the power of the internet. In Google and Democracy: Politics and the Power of the Internet. Routledge. https://doi.org/10.4324/9781315159157
- Sheafer, T., Shenhav, S. R., & Balmas, M. (2014). Political actors as communicators. In Political Communication (pp. 211–229). DE GRUYTER. https://doi.org/10.1515/9783110238174.211
- Shevtsov, A., Oikonomidou, M., Antonakaki, D., Pratikakis, P., & Ioannidis, S. (2023). What Tweets and YouTube comments have in common? Sentiment and graph analysis on data related to US elections 2020. PLoS ONE, 18(1 January), e0270542. https://doi.org/10.1371/journal.pone.0270542
- Sujoko, A., Haboddin, M., & Afala, L. O. M. (2022). Anies Baswedan’s Rhetoric amid Political Polarization for COVID-19 Handling in Jakarta, Indonesia. Jurnal Komunikasi: Malaysian Journal of Communication, 38(3), 54–69. https://doi.org/10.17576/JKMJC-2022-3803-04
- Tursunkulova, I., de Castell, S., & Jenson, J. (2023). Exploring Infranodus: a Text Analysis Tool. 20th International Conference on Cognition and Exploratory Learning in Digital Age, CELDA 2023, 34–42. https://eric.ed.gov/?id=ED636402
- Ul Haq, F. R., Hadna, A. H., Darwin, M., & Ikhwan, H. (2024). Dynamics of Covid-19 policy implementation in DKI Jakarta: study of the responses of Muhammadiyah members. Indonesian Journal of Islam and Muslim Societies, 14(1), 63–89. https://doi.org/10.18326/ijims.v14i1.63-89
- Yandra, A., Safitri, D., Herdi, Kurniawan, & Hamuddin, B. (2018). Exploring Discourse of Illocutionary Act: The Controversial Pribumi Anies Baswedan’s Speech. IOP Conference Series: Earth and Environmental Science, 175(1), 012230. https://doi.org/10.1088/1755-1315/175/1/012230
- Ye, Y., Zhang, R., Zhao, Y., Yu, Y., Du, W., & Chen, T. (2022). A Novel Public Opinion Polarization Model Based on BA Network. Systems, 10(2), 46. https://doi.org/10.3390/systems10020046
- Zumofen, G. (2023). What Drives the Selection of Political Information on Google? Tension Between Ideal Democracy and the Influence of Ranking. Swiss Political Science Review, 29(1), 120–138. https://doi.org/10.1111/spsr.12545
References
Alim, A. S., & Rahmawati, D. E. (2021). Komunikasi Politik Anies Baswedan Melalui Sosial Media Twitter. Jurnal Academia Praja, 4(2), 441–453. https://doi.org/10.36859/jap.v4i2.334
Alsinet, T., Argelich, J., Béjar, R., & Cemeli, J. (2019). A distributed argumentation algorithm for mining consistent opinions in weighted Twitter discussions. Soft Computing, 23(7), 2147–2166. https://doi.org/10.1007/s00500-018-3380-x
Angus, D., & Wiles, J. (2018). Social semantic networks: Measuring topic management in discourse using a pyramid of conceptual recurrence metrics. Chaos, 28(8). https://doi.org/10.1063/1.5024809
Anom, E., Vina, E., & Samani, M. C. (2024). Political Communication Strategy in the 2024 Indonesia’s Presidential Election. Jurnal Komunikasi: Malaysian Journal of Communication, 40(2), 296–309. https://doi.org/10.17576/JKMJC-2024-4002-17
Arman, Z. R., & McClurg, S. (2024). Exploring the Relationship Between Televised Presidential Debate and Twitter: A Network Analysis of Intermedia Agenda Setting. Communication Studies, 75(6), 861–879. https://doi.org/10.1080/10510974.2024.2342062
Bajari, A., Koswara, I., Istiqomah, R. N., & Erlandia, D. R. (2021). Hatenography On Twitter During the Covid-19 Pandemic in Indonesia: Hate Speech Case Against Anies Baswedan. Review of International Geographical Education Online, 11(5), 68–78. https://doi.org/10.48047/rigeo.11.05.07
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
Bruns, A., & Stieglitz, S. (2012). Quantitative Approaches to Comparing Communication Patterns on Twitter. Journal of Technology in Human Services, 30(3–4), 160–185. https://doi.org/10.1080/15228835.2012.744249
Budi, A., & Pamungkas, W. A. (2020). Partisanship in crisis: Public response to covid-19 pandemic in Indonesia. Jurnal Ilmu Sosial Dan Ilmu Politik, 24(1), 15–32. https://doi.org/10.22146/JSP.56443
Capano, G., Galanti, M. T., & Barbato, G. (2023). When the political leader is the narrator: the political and policy dimensions of narratives. Policy Sciences, 56(2), 233–265. https://doi.org/10.1007/s11077-023-09505-6
Chandrasekar, A., Clark, S. E., Martin, S., Vanderslott, S., Flores, E. C., Aceituno, D., Barnett, P., Vindrola-Padros, C., & Vera San Juan, N. (2024). Making the most of big qualitative datasets: a living systematic review of analysis methods. Frontiers in Big Data, 7, 1455399. https://doi.org/10.3389/fdata.2024.1455399
Dayter, D. (2015). Small stories and extended narratives on Twitter. Discourse, Context and Media, 10, 19–26. https://doi.org/10.1016/j.dcm.2015.05.003
Dongo, I., Cardinale, Y., Aguilera, A., Martinez, F., Quintero, Y., Robayo, G., & Cabeza, D. (2021). A qualitative and quantitative comparison between Web scraping and API methods for Twitter credibility analysis. International Journal of Web Information Systems, 17(6), 580–606. https://doi.org/10.1108/IJWIS-03-2021-0037
Gamal, D., Alfonse, M., El-Horbaty, E.-S. M., & Salem, A.-B. M. (2019). Implementation of Machine Learning Algorithms in Arabic Sentiment Analysis Using N-Gram Features. Procedia Computer Science, 154, 332–340. https://doi.org/10.1016/j.procs.2019.06.048
Gerber, A. (2022). The Detection of Conversation Patterns in South African Political Tweets Through Social Network Analysis. In J. E., G. A.J., V. S., & P. A. (Eds.), Communications in Computer and Information Science: Vol. 1551 CCIS (pp. 15–31). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-95070-5_2
Gil-Ramírez, M., Gómez-De-travesedo-rojas, R., & Almansa-Martínez, A. (2020). Political debate on youtube: Revitalization or deterioration of democratic deliberation? Profesional de la Informacion, 29(6), 1–19. https://doi.org/10.3145/epi.2020.nov.38
Gooch, A. (2018). Ripping Yarn: Experiments on Storytelling by Partisan Elites. Political Communication, 35(2), 220–238. https://doi.org/10.1080/10584609.2017.1336502
Hall, M., Mazarakis, A., Peters, I., Chorley, M., Caton, S., Mai, J. E., & Strohmaier, M. (2016). Following user pathways: Cross platform and mixed methods analysis in social media studies. Conference on Human Factors in Computing Systems - Proceedings, 07-12-May-2016, 3400–3407. https://doi.org/10.1145/2851581.2856500
Haris, A., Amalia, A., & Hanafi, K. (2022). Citra Politik Anies Baswedan Di Media Massa. Ilmu Komunikasi, 7 No.2(2), 1–10. http://jurnal.univrab.ac.id/index.php/cmv/article/view/2631
Hewage, T. N., Halgamuge, M. N., Syed, A., & Ekici, G. (2018). Review: Big data techniques of google, Amazon, Facebook and Twitter. Journal of Communications, 13(2), 94–100. https://doi.org/10.12720/jcm.13.2.94-100
Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE, 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679
Jaidka, K., Eichstaedt, J., Giorgi, S., Schwartz, H. A., & Ungar, L. H. (2021). Information-seeking vs. sharing: Which explains regional health? An analysis of Google Search and Twitter trends. Telematics and Informatics, 59, 101540. https://doi.org/10.1016/j.tele.2020.101540
Jayasudha, J., & Thilagu, M. (2022). A Survey on Sentimental Analysis of Student Reviews Using Natural Language Processing (NLP) and Text Mining. In P. M., D. S., P. M.R., B. P.K., T. G.A., C. S., & C. C. C.A. (Eds.), Communications in Computer and Information Science: Vol. 1737 CCIS (pp. 365–378). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-23233-6_27
Lawelai, H., Sadat, A., & Suherman, A. (2022). Democracy and Freedom of Opinion in Social Media: Sentiment Analysis on Twitter. PRAJA: Jurnal Ilmiah Pemerintahan, 10(1), 40–48. http://jurnal.umsrappang.ac.id/praja/article/view/585
Lestanata, Y. (2023). Anies Rasyid Baswedan’S Political Communication in Facing the 2024 Election. Jurnal Ilmiah Peuradeun, 11(3), 1155–1172. https://doi.org/10.26811/peuradeun.v11i3.952
Luth, Maswati, R., & Baharuddin, T. (2023). Online political trust in Anies Baswedan as a candidate for the President of Indonesia 2024. In Environmental Issues and Social Inclusion in a Sustainable Era (pp. 317–322). Routledge. https://doi.org/10.1201/9781003360483-36
Lybecker, D. L., McBeth, M. K., Husmann, M. A., & Pelikan, N. (2015). Do New Media Support New Policy Narratives? the Social Construction of the U.S.-Mexico Border on YouTube. Policy and Internet, 7(4), 497–525. https://doi.org/10.1002/poi3.94
Moya Sánchez, M., & Herrera Damas, S. (2015). How can twitter contribute to more advanced political communication? Arbor, 191(774). https://doi.org/10.3989/arbor.2015.774n4012
Naskar, D., Singh, S. R., Kumar, D., Nandi, S., & De La Rivaherrera, E. O. (2020). Emotion Dynamics of Public Opinions on Twitter. ACM Transactions on Information Systems, 38(2), 1–24. https://doi.org/10.1145/3379340
Nasution, F. A., Saraan, M. I. K., & Ramadhan, A. (2024). Political artifacts from the Jakarta International Stadium as local leadership impression management. Research Journal in Advanced Humanities, 5(3), 49–66. https://doi.org/10.58256/qzk7gk14
Nuraniyah, N. N. (2024). Indonesia’s 2024 Presidential Election: Sectarianism Out, Dynasty In, Democracy Tethered. Asia Policy, 19(4), 96–107. https://doi.org/10.1353/asp.2024.a942836
Paranyushkin, D. (2019). InfraNodus: Generating insight using text network analysis. The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, 3584–3589. https://doi.org/10.1145/3308558.3314123
Persson, G. (2017). Love, Affiliation, and Emotional Recognition in #kämpamalmö:— The Social Role of Emotional Language in Twitter Discourse. Social Media and Society, 3(1). https://doi.org/10.1177/2056305117696522
Puschmann, C. (2019). Beyond the Bubble: Assessing the Diversity of Political Search Results. Digital Journalism, 7(6), 824–843. https://doi.org/10.1080/21670811.2018.1539626
Rasyid, S. B. A., Nurmandi, A., Suswanta, Mutiarin, D., & Salahudin. (2021). Public Communication of Local Government Leaders: A Case Study of Three Major Governors in Indonesia. In A. T. (Ed.), Advances in Intelligent Systems and Computing (Vol. 1352, pp. 487–497). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-71782-7_43
Richey, S., & Taylor, J. B. (2017). Google and democracy: Politics and the power of the internet. In Google and Democracy: Politics and the Power of the Internet. Routledge. https://doi.org/10.4324/9781315159157
Sheafer, T., Shenhav, S. R., & Balmas, M. (2014). Political actors as communicators. In Political Communication (pp. 211–229). DE GRUYTER. https://doi.org/10.1515/9783110238174.211
Shevtsov, A., Oikonomidou, M., Antonakaki, D., Pratikakis, P., & Ioannidis, S. (2023). What Tweets and YouTube comments have in common? Sentiment and graph analysis on data related to US elections 2020. PLoS ONE, 18(1 January), e0270542. https://doi.org/10.1371/journal.pone.0270542
Sujoko, A., Haboddin, M., & Afala, L. O. M. (2022). Anies Baswedan’s Rhetoric amid Political Polarization for COVID-19 Handling in Jakarta, Indonesia. Jurnal Komunikasi: Malaysian Journal of Communication, 38(3), 54–69. https://doi.org/10.17576/JKMJC-2022-3803-04
Tursunkulova, I., de Castell, S., & Jenson, J. (2023). Exploring Infranodus: a Text Analysis Tool. 20th International Conference on Cognition and Exploratory Learning in Digital Age, CELDA 2023, 34–42. https://eric.ed.gov/?id=ED636402
Ul Haq, F. R., Hadna, A. H., Darwin, M., & Ikhwan, H. (2024). Dynamics of Covid-19 policy implementation in DKI Jakarta: study of the responses of Muhammadiyah members. Indonesian Journal of Islam and Muslim Societies, 14(1), 63–89. https://doi.org/10.18326/ijims.v14i1.63-89
Yandra, A., Safitri, D., Herdi, Kurniawan, & Hamuddin, B. (2018). Exploring Discourse of Illocutionary Act: The Controversial Pribumi Anies Baswedan’s Speech. IOP Conference Series: Earth and Environmental Science, 175(1), 012230. https://doi.org/10.1088/1755-1315/175/1/012230
Ye, Y., Zhang, R., Zhao, Y., Yu, Y., Du, W., & Chen, T. (2022). A Novel Public Opinion Polarization Model Based on BA Network. Systems, 10(2), 46. https://doi.org/10.3390/systems10020046
Zumofen, G. (2023). What Drives the Selection of Political Information on Google? Tension Between Ideal Democracy and the Influence of Ranking. Swiss Political Science Review, 29(1), 120–138. https://doi.org/10.1111/spsr.12545