Main Article Content

Abstract

Latar belakang: Skizofrenia merupakan penyakit yang menyerang sistem saraf pusat dan
berdampak pada perilaku manusia. Skizofrenia dapat disebabkan karena penurunan
mikroRNA (miRNA), transmisi sinyal, dan kerusakan pada struktur otak. Skizofrenia
meningkatkan angka kematian di dunia sampai dengan 20%. Pengobatan yang ada
sekarang memfokuskan pada pengaturan neurotransmiter pada area sinap neuron, namun
metode pengobatan ini mempunyai efek samping berupa peningkatan berat badan dan
efek hipersensitivitas terhadap dopamin. Tujuan: Tulisan ilmiah ini dibuat dengan tujuan
untuk membuktikan potensi miRNA-15a sebagai agen pengobatan skizofrenia melalui
remielinisasi sel oligodendrosit. Metode: Tulisan ilmiah ini dibuat menggunakan metode
analisis literatur dari PubMed, ScienceDirect,and Springer. Hasil: MiRNA-15a akan
dienkapsulasi dengan nanopartikel liposom aptamer myaptavin-3064 yang dikonjugasikan
dengan transferin agar dapat melewati sawar darah otak (BBB). Kesimpulan:
Berdasarkan teori yang didapatkan miRNA-15a dapat meningkatkan metabolisme dan
siklus sel sehingga diharapkan dapat meningkatkan potensi sel oligodendrosit yang rusak
untuk mengalami remielinisasi, sehingga bisa menjadi pengobatan baru untuk penderita
skizofrenia.
Kata kunci: skizofrenia, liposom, miRNA-15a, myaptavin-3064 aptamer, sel
oligodendrosit.

Keywords

skizofrenia liposom miRNA-15a myaptavin-3064 aptamer sel oligodendrosit

Article Details

How to Cite
Tsaniya Ahda Indrayani, Aulia Khoirunnisa, & Anindya Aviciena. (2023). KARAKTERISASI MIKRORNA-15A TERENKAPSULASI LIPOSOM DENGAN KONJUGASI DNA APTAMER MYAPTAVIN-3064 SEBAGAI NOVEL TERAPI REMIELINISASI SEL OLIGODENDROSIT PADA SKIZOFRENIA. Khazanah: Jurnal Mahasiswa, 15(02). https://doi.org/10.20885/khazanah.vol15.iss2.art4

References

  1. Morera-Fumero AL, Abreu-Gonzalez P. Role of melatonin in schizophrenia. Int J Mol Sci 2013;14:9037–50.
  2. Harvey PD, Strassnig MT, Silberstein J. Prediction of disability in schizophrenia: Symptoms, cognition, and self-assessment. J Exp Psychopathol 2019;10.
  3. Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, et al. Global Epidemiology and Burden of Schizophrenia: Findings From the Global Burden of Disease Study 2016. Schizophr Bull 2018;44:1195–203.
  4. Ayano G, Tesfaw G, Shumet S. The prevalence of schizophrenia and other psychotic disorders among homeless people: a systematic
  5. review and meta-analysis. BMC Psychiatry 2019;19:370.
  6. Fitryasari R, Yusuf A, Nursalam, Tristiana RD, Nihayati HE. Family members’ perspective of family Resilience’s risk factors in taking
  7. care of schizophrenia patients. Int J Nurs Sci 2018;5:255–61.
  8. Bornheimer LA. Suicidal Ideation in First‐Episode Psychosis (FEP): Examination of Symptoms of Depression and Psychosis Among
  9. Individuals in an Early Phase of Treatment. Suicide Life-Threatening Behav 2019;49:423–31.
  10. Harvey PD, Strassnig MT, Silberstein J. Prediction of disability in schizophrenia: Symptoms, cognition, and self-assessment. J Exp Psychopathol 2019;10:204380871986569.
  11. Wortinger LA, Engen K, Barth C, Lonning V, Jørgensen KN, Andreassen OA, et al. Obstetric complications and intelligence in patients on the schizophrenia-bipolar spectrum and healthy participants. Psychol Med 2020;50:1914–22.
  12. Teigset CM, Mohn C, Rund BR. Perinatal complications and executive dysfunction in early-onset schizophrenia. BMC Psychiatry 2020;20:103.
  13. Simons M, Nave KA. Oligodendrocytes: Myelination and axonal support. Cold Spring Harb Perspect Biol 2016;8:1–15.
  14. Thompson IA, De Vries EFJ, Sommer IEC. Dopamine D2up-regulation in psychosis patients after antipsychotic drug treatment. Curr
  15. Opin Psychiatry 2020;33:200–5.
  16. Düring S, Glenthøj BY, Andersen GS, Oranje B. Effects of dopamineD2/D3 blockade on human sensory and sensorimotor gating in initially antipsychotic-naive, first-episode schizophrenia patients. Neuropsychopharmacology 2014;39:3000–8.
  17. Chouinard G, Samaha AN, Chouinard VA, Peretti CS, Kanahara N, Takase M, et al. Antipsychotic-Induced Dopamine Supersensitivity Psychosis: Pharmacology, Criteria, and Therapy. Psychother Psychosom 2017;86:189–219.
  18. Grajales D, Ferreira V, Valverde ÁM. Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019;8:1–27. https://doi.org/10.3390/cells8111336
  19. Fereidan-Esfahani M, Yue WY, Wilbanks B, Johnson AJ, Warrington AE, Howe CL, et al. Remyelination-promoting dna aptamer conjugate myaptavin-3064 binds to adult oligodendrocytes in vitro. Pharmaceuticals 2020;13:1–11.
  20. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2010;15:1176–89.
  21. Wang J, Wang Y, Yang J, Huang Y. MicroRNAs as novel biomarkers of schizophrenia (Review). Exp Ther
  22. Med 2014;8:1671–6.
  23. Beveridge NJ, Gardiner E, CarrollAP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2010;15:1176–89.
  24. Wu X, Xu F, Xia X, Wang B, Yao J. MicroRNA-15a, microRNA-15b and microRNA-16 inhibit the human dopamine D1 receptor expression in four cell lines by targeting 3′UTR – 12 bp to + 154 bp. Artif Cells, Nanomedicine, Biotechnol 2020;48:276–87.
  25. Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021;601:120571.
  26. Barba AA, Bochicchio S, Dalmoro A, Lamberti G. Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications. Pharmaceutics 2019;11:360.
  27. Akbarzadeh A, Rezaei-sadabady R, Davaran S, Joo SW, Zarghami N. Liposome : classification , prepNew aspects of liposomesaration , and applications. Nanoscale Res Lett 2013;8:1–9.
  28. Nagalingam A. Drug Delivery Aspects of Herbal Medicines. Japanese Kampo Med. Treat. Common Dis. Focus Inflamm., Elsevier; 2017, p. 143–64.
  29. Vieira D, Gamarra L. Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. Int J Nanomedicine 2016;Volume 11:5381–414.
  30. Dasgupta I, Chatterjee A. Recent Advances in miRNA Delivery Systems. Methods Protoc 2021;4:10.
  31. Parsi S, Smith PY, Goupil C, Dorval V, Hébert SS. Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for
  32. Alzheimer’s disease. Mol Ther -Nucleic Acids 2015;4:e256.
  33. Ross C, Taylor M, Fullwood N, Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 2018;13:8507–22.
  34. McConnell EM, Holahan MR, Derosa MC. Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic Acid Ther 2014;24:388–404.
  35. Catuogno S, Esposito CL, de Franciscis V. Aptamer-mediated targeted delivery of therapeutics: An update. Pharmaceuticals 2016;9.
  36. Wiley DT, Webster P, Gale A, Davis ME. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to
  37. transferrin receptor. Proc Natl Acad Sci U S A 2013;110:8662–7.
  38. Fereidan-Esfahani M, Yue WY, Wilbanks B, Johnson AJ, Warrington AE, Howe CL, et al. Remyelination-promoting dna aptamer conjugate myaptavin-3064 binds to adult oligodendrocytes in vitro. Pharmaceuticals 2020;13:1–11.