Main Article Content
Abstract
Rumah sakit berperan penting dalam memberikan layanan kesehatan. Peningkatan populasi dan kesadaran akan kesehatan menyebabkan lonjakan jumlah pasien yang berdampak pada rumah sakit. Pada tahun 2021, Rumah Sakit Umum (RSU) mencatat sebanyak 2.500 pasien rawat inap dan 19.500 pasien rawat jalan. Lonjakan jumlah pasien yang tidak terduga dapat menyulitkan pihak rumah sakit dalam memberikan layanan terbaik kepada pasien. Oleh karena itu, kesiapan fasilitas termasuk pengelolaan dokumen pendaftaran pasien, menjadi faktor yang penting agar tidak menimbulkan antrian pasien yang menyebabkan pelayanan kurang maksimal. Perencanaan berbasis prediksi jumlah pasien diperlukan untuk mendukung pelayanan yang lebih baik. Perencanaan berbasis prediksi (forecasting) menjadi penting dalam meningkatkan mutu rumah sakit karena dapat memperkirakan kebutuhan operasional, seperti jumlah pasien, peralatan, serta pengelolaan kas. Untuk mengatasi masalah pelayanan di RSU Sarah, dikembangkan program prediksi jumlah pasien menggunakan metode Fuzzy Time Series yang diintegrasikan dalam sebuah website berbasis Python Streamlit. Program ini menampilkan grafik data aktual dan hasil prediksi, serta menghitung nilai akurasi menggunakan Mean Absolute Percentage Error (MAPE). Hasilnya menunjukkan MAPE sebesar 9,39% untuk pasien rawat inap dan 4,95% untuk rawat jalan, yang keduanya tergolong sangat baik (<10%). Program ini membantu rumah sakit mengatur pendaftaran dan pengelolaan dokumen secara lebih efisien, sehingga dapat meningkatkan kualitas layanan kepada pasien.
Keywords
Article Details
1. Proposed Policy for Journals That Offer Open Access
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
2. Proposed Policy for Journals That Offer Delayed Open Access
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication, with the work [SPECIFY PERIOD OF TIME] after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Aswi, & Sukarna. (2006). Analis Deret Waktu: Teori dan Aplikasi (A. M. Tiro (ed.)). Makassar: Andira Publisher.
- Athanasopoulos, G. Hyndman, R. J. (2018). Forecasting: principles and practice. Heathmont, Vic.: OTexts.
- Bouckaert, N., Van den Heede, K., & Van de Voorde, C. (2018). Improving the forecasting of hospital services: A comparison between projections and actual utilization of hospital services. Health Policy, 122(7), 728–736. https://doi.org/10.1016/j.healthpol.2018.05.010
- Chen, S. M. (1996). Forecasting enrollments based on fuzzy time series. 81, 311–319. https://doi.org/10.1016/0165-0114(95)00220-0
- Damayanti, D., Asakdiyah, S., & Hidayat, T. (2022). Perencanaan Penganggaran Kas Dan Forecasting Era Pandemi Di Rumah Sakit M ( Studi Kasus). Jurnal Ekobis Dewantara, 5(3), 236–245.
- Gul, M., & Celik, E. (2020). An exhaustive review and analysis on applications of statistical forecasting in hospital emergency departments. Health Systems, 9(4), 263–284. https://doi.org/10.1080/20476965.2018.1547348
- Hansun, S. (2012). Peramalan Data IHSG Menggunakan Fuzzy Time Series. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 7(1), 79–88. https://doi.org/10.22146/ijccs.2155
- Heizer, J., & Render, B. (2015). Manajemen Operasi : Manajemen Keberlangsungan dan Rantai Pasokan (Edisi 11). Salemba Empat: Jakarta.
- Herjanto, E. (2007). Manajemen Operasi (Edisi Keti). Jakarta: Grasindo.
- Irina, F. (2017). METODE PENELITIAN TERAPAN (1st ed.). Yogyakarta: Parama Ilmu.
- Khair, U., Fahmi, H., Hakim, S. Al, & Rahim, R. (2017). Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. Journal of Physics: Conference Series, 930(1). https://doi.org/10.1088/1742-6596/930/1/012002
- Lawalata, F., Sediyono, E., & Purnomo, H. (2021). Analisis Prediksi Jumlah Pasien Rawat Inap di Rumah Sakit GMIM Siloam Sonder Menggunakan Metode Triple Exponential Smoothing. Jointer - Journal of Informatics Engineering, 2(01), 32–26. https://doi.org/10.53682/jointer.v2i01.28
- Massonnaud, C., Roux, J., & Crépey, P. (2020). COVID-19: Forecasting short term hospital needs in France. MedRxiv, 1–11.
- Patria, L. (2021). Fuzzy Time Series Application in Predicting the Number of Confirmation Cases of Covid-19 Patients in Indonesia. International Journal of Quantitative Research …, 2(4), 193–200. http://journal.rescollacomm.com/index.php/ijqrm/article/view/194%0Ahttp://journal.rescollacomm.com/index.php/ijqrm/article/download/194/160
- Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel, F. (2022). Forecasting: theory and practice. In International Journal of Forecasting (Vol. 38, Issue 3, pp. 705–871). Elsevier B.V. https://doi.org/10.1016/j.ijforecast.2021.11.001
- Silva, P. C. L., Sadaei, H. J., Ballini, R., & Guimaraes, F. G. (2020). Probabilistic Forecasting with Fuzzy Time Series. IEEE Transactions on Fuzzy Systems, 28(8), 1771–1784. https://doi.org/10.1109/TFUZZ.2019.2922152
- Thira, I. J., Mayangky, N. A., Kholifah, D. N., Balla, I., & Gata, W. (2019). Peramalan Data Kunjungan Wisatawan Mancanegara ke Indonesia menggunakan Fuzzy Time Series. Jurnal Edukasi Dan Penelitian Informatika, 5(1).
- Vivianti, Aidid, M. K., & Nusrang, M. (2020). Implementasi Metode Fuzzy Time Series untuk Peramalan Jumlah Pengunjung di Benteng Fort Rotterdam. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 1(2), 1–12. https://doi.org/10.35580/variansiunm12895
- Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods (2nd ed.). United States: Pearson Education, Inc.
References
Aswi, & Sukarna. (2006). Analis Deret Waktu: Teori dan Aplikasi (A. M. Tiro (ed.)). Makassar: Andira Publisher.
Athanasopoulos, G. Hyndman, R. J. (2018). Forecasting: principles and practice. Heathmont, Vic.: OTexts.
Bouckaert, N., Van den Heede, K., & Van de Voorde, C. (2018). Improving the forecasting of hospital services: A comparison between projections and actual utilization of hospital services. Health Policy, 122(7), 728–736. https://doi.org/10.1016/j.healthpol.2018.05.010
Chen, S. M. (1996). Forecasting enrollments based on fuzzy time series. 81, 311–319. https://doi.org/10.1016/0165-0114(95)00220-0
Damayanti, D., Asakdiyah, S., & Hidayat, T. (2022). Perencanaan Penganggaran Kas Dan Forecasting Era Pandemi Di Rumah Sakit M ( Studi Kasus). Jurnal Ekobis Dewantara, 5(3), 236–245.
Gul, M., & Celik, E. (2020). An exhaustive review and analysis on applications of statistical forecasting in hospital emergency departments. Health Systems, 9(4), 263–284. https://doi.org/10.1080/20476965.2018.1547348
Hansun, S. (2012). Peramalan Data IHSG Menggunakan Fuzzy Time Series. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 7(1), 79–88. https://doi.org/10.22146/ijccs.2155
Heizer, J., & Render, B. (2015). Manajemen Operasi : Manajemen Keberlangsungan dan Rantai Pasokan (Edisi 11). Salemba Empat: Jakarta.
Herjanto, E. (2007). Manajemen Operasi (Edisi Keti). Jakarta: Grasindo.
Irina, F. (2017). METODE PENELITIAN TERAPAN (1st ed.). Yogyakarta: Parama Ilmu.
Khair, U., Fahmi, H., Hakim, S. Al, & Rahim, R. (2017). Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. Journal of Physics: Conference Series, 930(1). https://doi.org/10.1088/1742-6596/930/1/012002
Lawalata, F., Sediyono, E., & Purnomo, H. (2021). Analisis Prediksi Jumlah Pasien Rawat Inap di Rumah Sakit GMIM Siloam Sonder Menggunakan Metode Triple Exponential Smoothing. Jointer - Journal of Informatics Engineering, 2(01), 32–26. https://doi.org/10.53682/jointer.v2i01.28
Massonnaud, C., Roux, J., & Crépey, P. (2020). COVID-19: Forecasting short term hospital needs in France. MedRxiv, 1–11.
Patria, L. (2021). Fuzzy Time Series Application in Predicting the Number of Confirmation Cases of Covid-19 Patients in Indonesia. International Journal of Quantitative Research …, 2(4), 193–200. http://journal.rescollacomm.com/index.php/ijqrm/article/view/194%0Ahttp://journal.rescollacomm.com/index.php/ijqrm/article/download/194/160
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel, F. (2022). Forecasting: theory and practice. In International Journal of Forecasting (Vol. 38, Issue 3, pp. 705–871). Elsevier B.V. https://doi.org/10.1016/j.ijforecast.2021.11.001
Silva, P. C. L., Sadaei, H. J., Ballini, R., & Guimaraes, F. G. (2020). Probabilistic Forecasting with Fuzzy Time Series. IEEE Transactions on Fuzzy Systems, 28(8), 1771–1784. https://doi.org/10.1109/TFUZZ.2019.2922152
Thira, I. J., Mayangky, N. A., Kholifah, D. N., Balla, I., & Gata, W. (2019). Peramalan Data Kunjungan Wisatawan Mancanegara ke Indonesia menggunakan Fuzzy Time Series. Jurnal Edukasi Dan Penelitian Informatika, 5(1).
Vivianti, Aidid, M. K., & Nusrang, M. (2020). Implementasi Metode Fuzzy Time Series untuk Peramalan Jumlah Pengunjung di Benteng Fort Rotterdam. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 1(2), 1–12. https://doi.org/10.35580/variansiunm12895
Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods (2nd ed.). United States: Pearson Education, Inc.