Main Article Content

Abstract

One of the most causes of damage to structures during earthquake is a liquefaction. Liquefaction happened in a loose sand which saturated under earthquake shaking.  Earthquake shaking will cause cyclic loading to the surface of the ground which potential for occurrence of liquefaction. The liquefaction phenomenon is a soil behavior under cyclic loads that occurs in just a few moments. Due to the short cyclic load, the soil mass suddenly changes from a solid limit to a liquid limit or has a main consistency such as liquid. Liquefaction events during an earthquake can be characterized by the presence of ground movement in the horizontal direction, seepage water out from fracture of the ground, movement of sloping or descending buildings, displacement of ground advance, and landslides. This study took a case study in Glagah Beach at Kulonprogo Regency. That is beach areas which is a landform alongside a body water which consist of loose particles such as sand where Yogyakarta International Airport (YIA) is located. Analysis was carried out to determine the potential of liquefaction based N-SPT data using the Seed, Martin & Lysmer (1975).  Based on these data, The Cyclic Stress Ratio (CSR) value is calculated, which is the ratio between the average shear stress caused by the earthquake with the effective vertical stress in each layer and the value of the Cyclic Resistance Ratio (CRR), which is the amount of soil resistance to liquefaction. The analysis in the Kulonprogo Regency area is an area that is considered to require liquefaction. Analysis of liquefaction potential based on on N-SPT data with the Seed, Martin & Lysmer (1975) method on a 6,3 magnitude earthquake. The Result indicate the potential for liquefaction occurs up to a depth of 8,5 meters.

Keywords

liquefaction sand N-SPT data magnitude earthquake

Article Details

How to Cite
Artati, H. K., Pawirodikromo, W., & Purwanto, E. (2020). ANALISIS POTENSI LIKUIFAKSI PADA PASIR VULKANIK DI PANTAI GLAGAH KULONPROGO BERDASARKAN DATA N-SPT. Teknisia, 25(2), 108–120. https://doi.org/10.20885/teknisia.vol25.iss2.art6

References

  1. Anastasia Sri Lestari, Paulus Pramono Rahardjo, Metta Devi Hartadi, dan Antony Kesuma. 2014. Kajian Potensi Liquifaksi berdasarkan Konsep Critical State dan Uji Piezocone pada sedimen Pasiran Kota Padang. Penelitian. Universitas Katolik Parahyangan. Bandung.
  2. Day R W, 2002, Geothecnical EarthquakeEngineering Handbook, McGrawHill
  3. H.A. Halim Hasmar. 2013. Dinamika Tanah dan Rekayasa Kegempaan. UII Press. Yogyakarta.
  4. Hary Christady Hardiyatmo. 2014. Analisis dan Perancangan Fondasi I Edisi ketiga Cetakan Pertama. Gadjah Mada University Press. Yogyakarta.
  5. Herina S, 2013, Teady State Line dan State Parameter Sebagai Penentu Perilaku dan Potensi Liquifaksi Tanah Vulkanik Yogyakarta, Disertasi, Universitas Parahyangan, Bandung.
  6. Iwasaki T, TatsuokaF, Tokida K, Yasuda S, 1978, A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan, Proceeding 2nd International conference on Microzonation , SanFransisco, pp 885-896.
  7. John Tri Hatmoko. 2016. Dinamika Tanah dan Liquefaction Cetakan ke 01. Cahaya Atma Pustaka. Yogyakarta.
  8. Muntohar A.S, 2012, Studi Parametrik Potensi Likuifaksi dan Penurunan Permukaan Tanah Berdasarkan Uji Sondir, Prosiding Pertemuan Ilmiah Tahunan Himpunan Ahli Teknik Tanah Indonesia (PIT HATTI) ke-16 Jakarta 4 Desember 2012, pp 139-144.
  9. Ni Made Kerthina Mela Octavia. 2009. Analisa Potensi terjadinya Likuifaksi dengan menggunakan Lembar Kerja. Tugas Akhir. (Tidak diterbitkan). Universitas Bina Nusantara. Jakarta.
  10. Nurwihastuti D.W, Sartohadi J, Mardiatno D, Nehren U, Restu, 2014, Understanding of Earthquake Damage Pattern through Geomorphological Approach: A Case Study of 2006 Earthquake in Bantul, Yogyakarta, Indonesia, World Journal Engineering Technology., Vol. 2, no. 3, pp. 61–70.
  11. Putra Taufana, 2013. Pemetaan Kerentanan Daerah Potensi Likuifaksi, akibat Gempabumi Tektonik Studi Kasus Daerah Desa Panjangrejo dan sekitarnya, Kecamatan Pundong, Kabupaten Bantul, Daerah Istimmewa Yogyakarta. Naskah Publikasi. Universitas Diponegoro. Semarang.
  12. R. Pathak1 and A. S. Purandare (2016), Liquefaction susceptibility criterion of fine grained soil, International Journal of Geotechnical Engineering, vol 10 (5), pp. 445-449, doi:10.1080 / 19386362.2016. 1160588
  13. Reza P. Munirwan dan Hendra Gunawan. 2012. Evaluasi Potensial Likuifaksi Pesisir Pantai Krueng Raya Aceh Besar Provinsi Aceh. Jurnal Teknik Sipil. Vol. 1 No. 2: 117-226. Banda Aceh.
  14. Robertson P K, Wride C E, 1998, Evaluating cyclic liquefaction potential using the cone penetration test, Canadian Geothechnical Journal 35: 442-459.
  15. Seed H. B dan Idriss I.M, 1971, Simplified procedure for evaluating soil liquefaction potential, J.Geotech. Engng, ACSE, 97(9).
  16. Standar Nasional Indonesia. 2012. Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung. SNI 1726. Badan Standarisasi Nasional. Bandung.
  17. Standar Nasional Indonesia. 2008. Cara Uji Analisis Ukuran Butir Tanah. SNI 3423. Badan Standarisasi Nasional. Bandung.
  18. Widodo Pawirodikromo. 2012. Seismologi Teknik & Rekayasa Kegempaan Cetakan I. Pustaka Pelajar. Yogyakarta.
  19. Whitman, R.V, 1971, Resistance of soil to liquefaction and settlement, Soils and Foundations, 11(4)
  20. Zhang G, Robertson P.K, Brachman R.W.I, 2002, Estimating liquefaction induced ground settlements from CPT for level ground, Canadian Geothecnical Journal 39.