Main Article Content

Abstract

The movement of three large plates makes earthquakes frequent in Indonesia. The earthquake caused a lot of damage and casualties. One of the causes of the high risk of earthquake disasters is the large population. Java Island is the island that has the largest population in Indonesia. In addition, earthquakes often occur in Java and its surroundings, which cause a very high risk of earthquake. A further disaster that occurs after an earthquake is a tsunami if the earthquake originates from the ocean (earthquake originates from subduction). Therefore, this study examines the characteristics and parameters of earthquakes originating from subduction around Java Island which consists of 10 zones (5 of megathrust zone and 5 of benioff zone). The method used to determine these parameters is the Guternberg-Richter's law method and the maximum likely hood / characteristic method. The results of these two methods have differences due to earthquake uncertainty factors. In the application of earthquake hazard analysis, these two methods are used for calculations by increasing the percentage of use in the characteristic method. This is because geological evidence shows that characteristic earthquakes occur more frequently than earthquakes predicted from the gutenberg-richter model. In addition, it is also necessary to know the subduction zone dip angle for modeling 3D earthquake sources. Each subduction zone around the Java Island is divided into 5 areas. The megathrust zone is at a depth of up to 50 km and the benioff zone at a depth of more than 50 km. The result shows that the largest dip value is in the Java 3 megatrust zone with 14.667 and the Java 2 benioff zone with 53.667.

Keywords

Earthquake Subduction Gutenberg-Richter’s Law Maximum Likely Hood

Article Details

Author Biography

Wisnu Erlangga, Universitas Islam Indonesia

Department of Civil Engineering
How to Cite
Erlangga, W. (2020). KARAKTERISTIK DAN PARAMETER SUBDUKSI SUMBER GEMPA PULAU JAWA. Teknisia, 25(2), 88–98. https://doi.org/10.20885/teknisia.vol25.iss2.art4

References

  1. Aki, K. (1965). "Maximum Likelihood Estimate of b in the formula N = a – bm and its Confidence Limits". Bulletin Earthquake Research Institute of the University of Tokyo, 43: 237–239.
  2. Aldiamar, F., (2007). “Analisa Resiko Gempa dan Pembuatan Respon Spektra Desain untuk Jembatan Suramadu dengan Permodelan Sumber Gempa 3D”, ProgramPascasarjana Fakultas Teknik
  3. Sipil dan Perencanaan, ITB,Bandung.
  4. Asrurrifak, M. (2010). “Peta Respon Spektra Indonesia untuk
  5. Perencanaan Struktur Bangunan Tahan Gempa dengan Model Sumber Tiga Dimensi dalam Analisis Probabilistik”. Disertasi,
  6. Institut Teknologi Bandung, Bandung.
  7. Bock, R. Genrich J. F., Y. McCaffrey, E. Calais, C.W. Stevens, and C. Subarya. (1996). “Accretion of the southern Banda arc to the Australian plate margin determined by Global Positioning System measurements”, Tectonics. 15. 288-295.
  8. Cornell, C.A. (1968). “Engineering Seismic Risk Analysis”. Bulletin of the Seismological Society of America, Vol. 58, pp. 1583-1606.
  9. Erlangga, W., Teguh, M., dan Makrup. L. (2020). “The analysis of
  10. performance level on an existing multi-story building structure
  11. using the time history based on the subduction earthquake
  12. source”. E3S Web of Conferences. Vol 156. 4th International Conference on Earthquake Engineering & Disaster Mitigation (ICEEDM 2019). Padang. Indonesia.
  13. Fauzi, U. J., (2011). “Peta Deagregasi Indonesia Berdasarkan Analisis
  14. Probabilitas Dengan Sumber Gempa Tiga Dimensi”. Tesis, Institut Teknologi Bandung, Bandung.
  15. Gutenberg, B. and Richter, C.F., (1944), “Frequency of Earthquakes in California”. Bulletin of the Seismological Society of America, 34, 185-188.
  16. Irsyam, M., Sengara I.W., Adiamar, F., Widiyantoro, S., Triyoso, W., Natawidjaja, D.H., Kertapati, E., Meilano, I., Suhardjono, Asrurifak, M., dan Ridwan, M. (2010). “Ringkasan Hasil Studi Tim Revisi Peta Gempa Indonesia”, Bandung.
  17. Kramer, S.L. (1996). “Geotechnical Earhquake Engineering”. Prentice-Hall. New Jersey.
  18. Lay, T. & Wallace, T.C. (1995). “Modern Global Seismology”. Academic Press, San Diego, California.
  19. Mahesworo, R. P. (2008). “Usulan Ground Motion Untuk Empat Kota Besar Di Wilayah Sumatera Berdasarkan Hasil Analisis Seismic Hazard Menggunakan Model Sumber Gempa 3 Dimensi”, Tesis, Institut Teknologi Bandung.
  20. Makrup, L. (2009). “Pengembangan Peta Deagregasi Hazard untuk
  21. Indonesia Melalui Pembuatan Software dengan Pemodelan Sumber Gempa Tiga Dimensi”. Disertasi. Institut Teknologi Bandung. Indonesia.
  22. Milson, J., Masson D., Nichols G., Sikumbang N., Dwiyanto B., Parson L., Kallagher H. (1992). “The Manokwari Trough and The Western End of The New Guinea Trench,” Tectonics. 11. 145-153.
  23. Nicolaou.A.S. (1998). “A GIS Platform for Earthquake Risk Analysis”. Dissertation, Faculty of the Graduate School of State 11 Erlangga –Karakteristik dan Parameter Subduksi Sumber Gempa Pulau Jawa
  24. ISSN 0853-8557 University of New York at Buffalo USA.
  25. SNI 1726-2019. (2019). “Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung”. Badan Standarisasi Nasional (BSN). Jakarta.
  26. Sulistyanto, Iwan Gatot. (2009), “Geografi 1 : untuk Sekolah Menengah Atas/Madrasah Aliyah Kelas X”. Departemen Pendidikan Nasional. Jakarta.
  27. Sunardi, B,. (2013), “Peta Deagregasi Hazard Gempa Wilayah Jawa
  28. dan Rekomendasi Ground Motion Di Empat Daerah”. Tesis, Universitas Islam Indonesia, Yogyakarta.
  29. Teguh, M. dan Erlangga,W. 2019). “Comparison of Bedrock and
  30. Surface Time Histories Subjected to Subduction Earthquake in a Selected Location of Yogyakarta”, Journal of GEOMATE. 17. Issue 63. pp. 77 -86.
  31. Widodo. (2012). “Seismologi Teknik & Rekayasa Kegempaan”. Pustaka Pelajar. Yogyakarta.