Main Article Content

Abstract

The performance of a pavement depends on a load of passing vehicles; in anticipation of these problems, alternative solutions are needed. One solution is using a Superpave mixture as a type of pavement. Previous studies concluded that the Superpave mixture performed better in receiving or distributing vehicle loads and resistance to submersion conditions. However, to strengthen this opinion, exploring it from another point of view is necessary. One of them is the mechanistic-empirical analysis of the KENPAVE program, which is needed to determine the prediction of service life. In this study, the AC-WC mixture was used as a comparison. The analysis started by calculating the stiffness modulus value for both types of pavements, determining the alternative pavement design plans to be applied using Bina Marga 2017 method, and ending the mechanistic-empirical analysis process using two modeling forms, namely viscoelastic and elastic. As a result, the Superpave mixture has a relatively higher predictive value of service life compared to the AC-WC mixture. This result applies to both the viscoelastic and elastic models. Suggestions for using an alternative with Bina Marga 2017’s design chart 3-B on FFF7 criteria are given regarding maximizing the performance of the Superpave mixture in the field. The mechanistic-empirical analysis of the design alternative shows that the predicted service life is above the 20-year design age limit, which is 30.7 years in the viscoelastic model and 40.9 years in the elastic model before the prediction of the first damage.

Keywords

AC-WC Elastic KENPAVE Viscoelastic Superpave

Article Details

How to Cite
Muhamad Abdul Hadi, & Miftahul Fauziah. (2022). STUDI KOMPARASI PREDIKSI UMUR PELAYANAN ANTARA CAMPURAN SUPERPAVE DAN AC-WC MENGGUNAKAN PERMODELAN VISKOELASTIK DAN ELASTIK. Teknisia, 27(2), 71–82. https://doi.org/10.20885/teknisia.vol27.iss2.art1

References

  1. Al-Khateeb, G. G., Ghuzlan, K. A., dan Al-Barqawi, M. O. (2017). “Effect of Superpave Restricted Zone on Volumetric and Compaction Properties of Aphalt Mmixtures”, International Journal of Pavement Research and Technology 2017.
  2. Asphalt Institute. (1982). "Research and Development of the Asphalt Institute’s Thickness Design Manual (MS-1)”, RR-82-2, Ninth Edition, Maryland, USA.
  3. Dinata, I. D., Rahmawati, A., dan Setiawan, D. M. (2017). “Evaluasi Tebal Perkerasan Lentur Dengan Metode Analisa Komponen Dari Bina Marga 1987 Dan Metode Aashto 1993 Menggunakan Program Kenpave (Studi Kasus: Jalan Karangmojo-Semin Sta 0+000 sampai Sta 4+050)”, Jurnal Ilmiah Semesta Teknika, Vol. 20, No.1, 8-19.
  4. Hadi, M.A., dan Fauziah, M. (2019). “Perbandingan Karakteritik Campuran Superpave Antara yang Menggunakan Bahan Ikat Starbit E-55 dengan Pen 60/70 pada Variasi Durasi Rendaman Air Payau”, Civil Engineering and Environment Symposium 2019.
  5. Hadi, M. A., dan Fauziah, M. (2020). “Sensitivitas Kinerja Struktur Campuran Superpave Terhadap Pengaruh Variasi Tipe Bahan Ikat dan Kecepatan Kendaraan”, Civil Engineering, Environmental, Disaster and Risk Management Symposium 2020.
  6. Hadi, M. A., Fauziah, M., and Subarkah (2021). “Comparative Study of Marshall Properties and Durability of Superpave and AC-WC Pavement by Using Starbit E-55 and Pen 60/70”. IOP Conference Series: Earth and Environmental Science, 933,1,012003,2021.
  7. Hakim, I. N., dan Kushari, B. (2019). “Kaji Ulang Desain Tebal Perkerasan Lentur Pada Ruas Jalan Pakem-Prambanan Untuk Mengantisipasi Peningkatan Status Jalan”, Konferensi Nasional Inovasi Lingkungan Terbangun – FTSP UII 2019.
  8. Huang, Y. H. (1993). “Pavement Analysis and Design”, 1st Edition, Prentice Hall, Englewood Cliffs, New Jersey.
  9. Huang, Y. H. (2004). “Pavement Analysis and Design”, 2nd Edition, Prentice Hall, Englewood Cliffs, New Jersey.
  10. Mahmuddin, A., dan Fauziah, M. (2019). “Analsis Lapis Tebal Perkerasan Lentur dengan Metode Empirik dan Metode Mekanistik-Empirik dengan Program KENPAVE pada Ruas Jalan Imogiri Timur”, Seminar Nasional BAPPEDA Provinsi Jawa Tengah.
  11. Mejlun, L., Judycki, J., dan Dolzycki, B. (2017). “Comparison of Elastic and Viscoelastic Analysis of Asphalt Pavement at High Temperature”, Procedia Engineering, 172 746 – 753.
  12. Menteri Pekerjaan Umum. (2017). “Manual Perkerasan Jalan (Revisi Juni 2017) Nomor 04/SE/Db/2017”, Direktorat Jenderal Bina Marga, Jakarta.
  13. Ramadhani, R. I., dan Fauziah, M. (2018). “Evaluasi Tebal Perkerasan Lentur dengan Metode Bina Marga 2013 Dan Metode Mekanistik-Empirik Menggunakan Program Kenpave Pada Ruas Jalan Jogja–Solo”, Civil Engineering and Environment Symposium 2018.
  14. Pambudi, R. A., dan Fauziah, M. (2021). “Evaluasi Perancangan Struktur Perkerasan dengan Metode Bina Marga 2017 dan Program KENPAVE Menggunakan Pendekatan Elastik dan Viskoelastik”, Prosiding Seminar Nasional Hasil Penelitian dan Pengabdian Masyarakat.
  15. Rind T. A., Memon N. A., dan Qureshi, M. S. (2017). “Analysis and Design of Flexible Pavement Using Emperical-Mekanistic Base Software (KENPAVE)”, International Conference on Sustainable Development in Civil Engineering 2017.
  16. Strategic Highway Research Program (SHRP) A-407. (1994). “The Superpave Mix Design Manual for New Construction and Overlays”, Strategic Highway Research Program National Research Council.
  17. Suwanda, A., dan Kushari, B. (2019). “Analisis Perbandingan Desain Struktur Perkerasan Lentur Menggunakan Metode Mekanistik Empiris Dengan Pendekatan Viskoelastik Dan Elastik Linier Pada Ruas Jalan Tempel – Pakem”, Kolokium Teknik Sipil Universitas Islam Indonesia.
  18. Zumrawi, M. M. E., and Edrees, S. A. S. (2019). “Comparison of Marshall and Superpave Asphalt Design Methods for Sudan Pavement Mixes”, International Journal of Scientific and Technical Advancements, Vol.2.