Main Article Content
Abstract
Lemah Ireng II Bridge is a type of box girder balance cantilever bridge located in Semarang Regency, Central Java, which was completed in 2014. The renewal of bridge loading regulations in 2016 consisted of SNI 1725:2016 for standard load and SNI 2833:2016 for earthquake load. Changes in earthquake loading regulations resulted in an increase in the ground surface spectra value in the short period (Sds, T=0,2 second) in the longitudinal direction by 38.47% and in the transverse direction by 45.39% as a result of updating the earthquake map and the earthquake response modification factor. To determine the level of bridge performance against the applicable earthquake regulations based on the pier structure parameters, the Non-Linear Time History Analysis (NLTHA) method is used. The NLTHA method uses seven deaggregated ground motion records which aim to represent the ground motions that occur at the bridge site. Parameter limits at the pier to determined performance level of bridge based on NCHRP Synthesis 440 and NCHRP Research Report 949. According to the results of performance-based analysis, the bridge pier structure meets the Fully Operational performance level based on the parameters of drift, compressive strain of concrete and tensile strain of steel reinforcement. At this level of performance, after an earthquake the structure suffers very little damage so no repairs are needed and the bridge can function immediately after the earthquake.
Keywords
Article Details
Copyright (c) 2023 Teknisia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Under the following term:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
- AASHTO. (2002). Standard specifications for highway bridges. American Association of State Highway and Transportation Officials.
- Awasthi, J., Ghosh, G., & Mehta, P. K. (2020). Seismic Design of A Curved Bridge as per Performance Based Criteria. Materials Today: Proceedings, 38, 3014–3018. https://doi.org/10.1016/j.matpr.2020.09.324
- Badan Standardisasi Nasional. (2005). RSNI T-02-2005 Standar Pembebanan Untuk Jembatan. Badan Standardisasi Nasional.
- Badan Standardisasi Nasional. (2008). SNI 2833:2008 Standar Perencanaan Ketahanan Gempa untuk Jembatan. Badan Standardisasi Nasional.
- Badan Standardisasi Nasional. (2016a). SNI 1725:2016 Pembebanan Untuk Jembatan. Badan Standarisasi Nasional. www.bsn.go.id
- Badan Standardisasi Nasional. (2016b). SNI 2833:2016 Perencanaan Jembatan Terhadap Beban Gempa. Badan Standardisasi Nasional. www.bsn.go.id
- European Committee for Standardization. (2005). Eurocode 8: Design of Structures for Earthquake Resistance – Part 2: Bridges. European Committee for Standardization.
- Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress-Strain Model for Confined Concrete. Journal Structur Engineering, 114(8), 1804–1826.
- Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. IABSE Reports of the Working Commissions, 13. https://doi.org/10.5169/seals-13741
- National Cooperative Highway Research Program. (2013). NCHRP Synthesis 440 Performance-Based Seismic Bridge Design. Transportation Research Board.
- National Cooperative Highway Research Program. (2020). NCHRP Research Report 949 Proposed AASHTO Guidelines for Performance-Based Seismic Bridge Design. Transportation Research Board. https://doi.org/10.17226/25913
- PusGen. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman.
- PusGen. (2022). Peta Deagregasi Bahaya Gempa Indonesia untuk Perencanaan dan Evaluasi Infrastruktur Tahan Gempa. Direktorat Bina Teknik Permukiman dan Perumahan.
- Riyansyah, M., Budi Wijayanto, P., Riyanto Trilaksono, B., Adi Putra, S., & Shona Laila, D. (2020). Real Time Bridge Dynamic Response: Bridge Condition Assessment and Early Warning System. 10(1).
- Sigdel, L. D., Al-Qarawi, A., Leo, C. J., Liyanapathirana, S., & Hu, P. (2021). Geotechnical Design Practices and Soil–Structure Interaction Effects of an Integral Bridge System: A Review. In Applied Sciences (Switzerland) (Vol. 11, Issue 15). MDPI AG. https://doi.org/10.3390/app11157131
- Sinatra, F., Riyansyah, M., & Suarjana, M. (2020). Performance Evaluation of Existing Special Bridges in Indonesia Based on SNI 1725:2016 and SNI 2833:2016 (Case Study of Dr. Ir. Soekarno Bridge). Jurnal Teknik Sipil, 27(1), 51–60.
- Suarjana, M., Octora, D. D., & Riyansyah, M. (2020). Seismic Performance of RC Hollow Rectangular Bridge Piers Retrofitted by Concrete Jacketing Considering the Initial Load and Interface Slip. Journal of Engineering and Technological Sciences, 52(3), 343–368. https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.3
- Zhang, Q., & Alam, M. S. (2019). Performance-Based Seismic Design of Bridges: A Global Perspective and Critical Review of Past, Present and Future Directions. Structure and Infrastructure Engineering, 15(4), 539–554. https://doi.org/10.1080/15732479.2018.1558269
References
AASHTO. (2002). Standard specifications for highway bridges. American Association of State Highway and Transportation Officials.
Awasthi, J., Ghosh, G., & Mehta, P. K. (2020). Seismic Design of A Curved Bridge as per Performance Based Criteria. Materials Today: Proceedings, 38, 3014–3018. https://doi.org/10.1016/j.matpr.2020.09.324
Badan Standardisasi Nasional. (2005). RSNI T-02-2005 Standar Pembebanan Untuk Jembatan. Badan Standardisasi Nasional.
Badan Standardisasi Nasional. (2008). SNI 2833:2008 Standar Perencanaan Ketahanan Gempa untuk Jembatan. Badan Standardisasi Nasional.
Badan Standardisasi Nasional. (2016a). SNI 1725:2016 Pembebanan Untuk Jembatan. Badan Standarisasi Nasional. www.bsn.go.id
Badan Standardisasi Nasional. (2016b). SNI 2833:2016 Perencanaan Jembatan Terhadap Beban Gempa. Badan Standardisasi Nasional. www.bsn.go.id
European Committee for Standardization. (2005). Eurocode 8: Design of Structures for Earthquake Resistance – Part 2: Bridges. European Committee for Standardization.
Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress-Strain Model for Confined Concrete. Journal Structur Engineering, 114(8), 1804–1826.
Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. IABSE Reports of the Working Commissions, 13. https://doi.org/10.5169/seals-13741
National Cooperative Highway Research Program. (2013). NCHRP Synthesis 440 Performance-Based Seismic Bridge Design. Transportation Research Board.
National Cooperative Highway Research Program. (2020). NCHRP Research Report 949 Proposed AASHTO Guidelines for Performance-Based Seismic Bridge Design. Transportation Research Board. https://doi.org/10.17226/25913
PusGen. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman.
PusGen. (2022). Peta Deagregasi Bahaya Gempa Indonesia untuk Perencanaan dan Evaluasi Infrastruktur Tahan Gempa. Direktorat Bina Teknik Permukiman dan Perumahan.
Riyansyah, M., Budi Wijayanto, P., Riyanto Trilaksono, B., Adi Putra, S., & Shona Laila, D. (2020). Real Time Bridge Dynamic Response: Bridge Condition Assessment and Early Warning System. 10(1).
Sigdel, L. D., Al-Qarawi, A., Leo, C. J., Liyanapathirana, S., & Hu, P. (2021). Geotechnical Design Practices and Soil–Structure Interaction Effects of an Integral Bridge System: A Review. In Applied Sciences (Switzerland) (Vol. 11, Issue 15). MDPI AG. https://doi.org/10.3390/app11157131
Sinatra, F., Riyansyah, M., & Suarjana, M. (2020). Performance Evaluation of Existing Special Bridges in Indonesia Based on SNI 1725:2016 and SNI 2833:2016 (Case Study of Dr. Ir. Soekarno Bridge). Jurnal Teknik Sipil, 27(1), 51–60.
Suarjana, M., Octora, D. D., & Riyansyah, M. (2020). Seismic Performance of RC Hollow Rectangular Bridge Piers Retrofitted by Concrete Jacketing Considering the Initial Load and Interface Slip. Journal of Engineering and Technological Sciences, 52(3), 343–368. https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.3
Zhang, Q., & Alam, M. S. (2019). Performance-Based Seismic Design of Bridges: A Global Perspective and Critical Review of Past, Present and Future Directions. Structure and Infrastructure Engineering, 15(4), 539–554. https://doi.org/10.1080/15732479.2018.1558269