Main Article Content

Abstract

Lemah Ireng II Bridge is a type of box girder balance cantilever bridge located in Semarang Regency, Central Java, which was completed in 2014. The renewal of bridge loading regulations in 2016 consisted of SNI 1725:2016 for standard load and SNI 2833:2016 for earthquake load. Changes in earthquake loading regulations resulted in an increase in the ground surface spectra value in the short period (Sds, T=0,2 second) in the longitudinal direction by 38.47% and in the transverse direction by 45.39% as a result of updating the earthquake map and the earthquake response modification factor. To determine the level of bridge performance against the applicable earthquake regulations based on the pier structure parameters, the Non-Linear Time History Analysis (NLTHA) method is used. The NLTHA method uses seven deaggregated ground motion records which aim to represent the ground motions that occur at the bridge site. Parameter limits at the pier to determined performance level of bridge based on NCHRP Synthesis 440 and NCHRP Research Report 949. According to the results of performance-based analysis, the bridge pier structure meets the Fully Operational performance level based on the parameters of drift, compressive strain of concrete and tensile strain of steel reinforcement. At this level of performance, after an earthquake the structure suffers very little damage so no repairs are needed and the bridge can function immediately after the earthquake.

Keywords

Performance-based design Performance level Non-linear time history analysis

Article Details

Author Biographies

Farah Amrina, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Indonesia

Pegawai SubDirektorat Wilayah I (meliputi Pulau Sumatera dan Kalimantan), Direktorat Jembatan, Direktorat Jenderal Bina Marga. Sedang diberi tugas belajar di Program Magister Teknik Sipil, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung.

Muhammad Riyansyah, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Indonesia

Dosen KK Rekayasa Struktur, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Indonesia

Aris Aryanto, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Indonesia

Dosen KK Rekayasa Struktur, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Indonesia

Erwin Lim, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Indonesia

Dosen KK Rekayasa Struktur, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Indonesia

How to Cite
Farah Amrina, Muhammad Riyansyah, Aris Aryanto, & Erwin Lim. (2023). EVALUASI KINERJA PILAR JEMBATAN LEMAH IRENG II BERDASARKAN PERFORMANCE BASED SEISMIC DESIGN. Teknisia, 28(1), 1–12. https://doi.org/10.20885/teknisia.vol28.iss1.art1

References

  1. AASHTO. (2002). Standard specifications for highway bridges. American Association of State Highway and Transportation Officials.
  2. Awasthi, J., Ghosh, G., & Mehta, P. K. (2020). Seismic Design of A Curved Bridge as per Performance Based Criteria. Materials Today: Proceedings, 38, 3014–3018. https://doi.org/10.1016/j.matpr.2020.09.324
  3. Badan Standardisasi Nasional. (2005). RSNI T-02-2005 Standar Pembebanan Untuk Jembatan. Badan Standardisasi Nasional.
  4. Badan Standardisasi Nasional. (2008). SNI 2833:2008 Standar Perencanaan Ketahanan Gempa untuk Jembatan. Badan Standardisasi Nasional.
  5. Badan Standardisasi Nasional. (2016a). SNI 1725:2016 Pembebanan Untuk Jembatan. Badan Standarisasi Nasional. www.bsn.go.id
  6. Badan Standardisasi Nasional. (2016b). SNI 2833:2016 Perencanaan Jembatan Terhadap Beban Gempa. Badan Standardisasi Nasional. www.bsn.go.id
  7. European Committee for Standardization. (2005). Eurocode 8: Design of Structures for Earthquake Resistance – Part 2: Bridges. European Committee for Standardization.
  8. Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress-Strain Model for Confined Concrete. Journal Structur Engineering, 114(8), 1804–1826.
  9. Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. IABSE Reports of the Working Commissions, 13. https://doi.org/10.5169/seals-13741
  10. National Cooperative Highway Research Program. (2013). NCHRP Synthesis 440 Performance-Based Seismic Bridge Design. Transportation Research Board.
  11. National Cooperative Highway Research Program. (2020). NCHRP Research Report 949 Proposed AASHTO Guidelines for Performance-Based Seismic Bridge Design. Transportation Research Board. https://doi.org/10.17226/25913
  12. PusGen. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman.
  13. PusGen. (2022). Peta Deagregasi Bahaya Gempa Indonesia untuk Perencanaan dan Evaluasi Infrastruktur Tahan Gempa. Direktorat Bina Teknik Permukiman dan Perumahan.
  14. Riyansyah, M., Budi Wijayanto, P., Riyanto Trilaksono, B., Adi Putra, S., & Shona Laila, D. (2020). Real Time Bridge Dynamic Response: Bridge Condition Assessment and Early Warning System. 10(1).
  15. Sigdel, L. D., Al-Qarawi, A., Leo, C. J., Liyanapathirana, S., & Hu, P. (2021). Geotechnical Design Practices and Soil–Structure Interaction Effects of an Integral Bridge System: A Review. In Applied Sciences (Switzerland) (Vol. 11, Issue 15). MDPI AG. https://doi.org/10.3390/app11157131
  16. Sinatra, F., Riyansyah, M., & Suarjana, M. (2020). Performance Evaluation of Existing Special Bridges in Indonesia Based on SNI 1725:2016 and SNI 2833:2016 (Case Study of Dr. Ir. Soekarno Bridge). Jurnal Teknik Sipil, 27(1), 51–60.
  17. Suarjana, M., Octora, D. D., & Riyansyah, M. (2020). Seismic Performance of RC Hollow Rectangular Bridge Piers Retrofitted by Concrete Jacketing Considering the Initial Load and Interface Slip. Journal of Engineering and Technological Sciences, 52(3), 343–368. https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.3
  18. Zhang, Q., & Alam, M. S. (2019). Performance-Based Seismic Design of Bridges: A Global Perspective and Critical Review of Past, Present and Future Directions. Structure and Infrastructure Engineering, 15(4), 539–554. https://doi.org/10.1080/15732479.2018.1558269