Main Article Content
Abstract
Flexible pavement failures in Indonesia are primarily attributed to weak subgrade conditions, necessitating soil reinforcement measures. This study aimed to enhance soil-bearing capacity through soil reinforcement experiments utilizing a mixture of sand columns, rice husk ash, and cement. A prototype was constructed, including a 1×1×1 m steel box, an IWF steel frame, a dial gauge, a steel plate, and a proving ring, to apply a load to soil arranged within the iron box using a 3-ton hydraulic jack. The study focused on a clay soil type (following the AASHTO method) and conducted soil reinforcement in four scenarios. The result shows that in all scenarios involving a sand column, Scenario 1: 3% sand, 3% rice husk ash, and 6% cement obtained a qult is 0.23 kg/cm2 and BCR 114.94%; Scenario 2: 3% sand, 6% rice husk ash, and 3% cement obtained a qult is 0.12 kg/cm2 and BCR 11.49%; Scenario 3: 6% sand, 3% rice husk ash, and 3% cement obtained a qult is 0.14 kg/cm2 and BCR 26.44%; Scenario 4: 6% sand, 6% rice husk ash, and 0% cement obtained a qult is 0.24 kg/cm2 and a BCR of 116.09%. Notably, scenario 4, featuring a column composition of 6% sand, 6% rice husk ash, and 0% cement, achieved a significant increase in bearing capacity (qult) with a value of 0.24 kg/cm2 and a high Bearing Capacity Ratio (BCR) of 116.09%. Scenario 1 was the most effective in reducing moisture content by 4% relative to the original soil moisture content, with a mixture comprising 3% sand column, 3% rice husk ash, and 6% cement. The findings suggest that applying soil columns can enhance the performance of flexible pavements.
Keywords
Article Details
Copyright (c) 2023 Teknisia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Under the following term:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
- Abdullah, G. M. S. (2023). Performance of Enhanced Problematic Soils in Roads Pavement Structure: Numerical Simulation and Laboratory Study. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032595
- Alimohammadi, H., Schaefer, V. R., Zheng, J., & Li, H. (2021). Performance evaluation of geosynthetic reinforced flexible pavement: a review of full-scale field studies. International Journal of Pavement Research and Technology, 14(1), 30–42. https://doi.org/10.1007/s42947-020-0019-y
- Banerjee, S., Srivastava, M. V. K., Manna, B., & Shahu, J. T. (2022). A Novel Approach to the Design of Geogrid-Reinforced Flexible Pavements. International Journal of Geosynthetics and Ground Engineering, 8(2). https://doi.org/10.1007/s40891-022-00373-3
- Hashem, D. M., & Abu-Baker, M. A. (2013). Numerical Modeling of Flexible Pavement Constructed on Expansive Soils. European International Journal of Science and Technology, 2(10). www.eijst.org.uk
- Ghanizadeh, A. R., Salehi, M., & Jalali, F. (2022). Investigating the Effect of Lime Stabilization of Subgrade on the Fatigue & Rutting Lives of Flexible Pavements Using the Nonlinear Mechanistic-Empirical Analysis. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-022-02336-x
- Kusuma, R. I., Mina, E., Fathonah, W., Wally, M. G., & Fajarwati, Y. (2022). Stabilisasi tanah dengan penambahan arang kayu terhadap nilai daya dukung CBR. INERSIA, 18(1), 72–82. https://doi.org/10.21831/inersia.v181
- Muntohar, A. S. (2016). A Numerical Method of the Flexible Pavement Supported by SSC on Expansive Soil. Applied Mechanics and Materials, 845, 62–69. https://doi.org/10.4028/www.scientific.net/amm.845.62
- Nur, K. N., Mahyuddin, Bachtiar, E., Tumpu, M., Mukrim, M. I., Irianto, Kadir, Y., Arifin, T. S. P., Ahmad, S. N., Masdiana, Hasmar Halim, & Syukuriah. (2021). Perancangan Perkerasan Jalan (Cetakan 1). Yayasan Kita Menulis.
- Oloo, S. Y., Fredlund, D. G., & Gan, J. K.-M. (1997). Bearing capacity of unpaved roads. Canadian Geotechnical Journal, 34(3), 398–407. https://doi.org/10.1139/cgj-34-3-398
- Reimer, D. J., 1992). Military Soils Engineering. Field Manual Headquarters, Department of the Army. Washington, DC. .
- Rifqi, M., & Fitriani, H. (2020). Identifikasi Kerusakan Perkerasan Lentur Pada Ruas Jalan Soekarno – Hatta, Palembang. JURNAL SAINTIS, 20(01), 19–26. https://doi.org/10.25299/saintis.2020.vol20(01).4072
- Shakhan, M. R., Topal, A., & Sengoz, B. (2022). Impact of Subgrade Strength on Pavement Performance. Deu Muhendislik Fakultesi Fen ve Muhendislik, 24(71), 501–508. https://doi.org/10.21205/deufmd.2022247115
- Shirazi, M. G., Rashid, A. S. B. A., Bin Nazir, R., Rashid, A. H. B. A., Moayedi, H., Horpibulsuk, S., & Samingthong, W. (2020). Sustainable soil bearing capacity improvement using natural limited life geotextile reinforcement—a review. In Minerals (Vol. 10, Issue 5). MDPI AG. https://doi.org/10.3390/min10050479
- Soares, L. W. O., Braga, R. M., Freitas, J. C. O., Ventura, R. A., Pereira, D. S. S., & Melo, D. M. A. (2015). The effect of rice husk ash as pozzolan in addition to cement Portland class G for oil well cementing. Journal of Petroleum Science and Engineering, 131, 80–85. https://doi.org/10.1016/j.petrol.2015.04.009
- Undang-undang Republik Indonesia. (2009). UU Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan. https://www.dpr.go.id/dokjdih/document/uu/UU_2009_22.pdf
- Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27. https://doi.org/10.1016/j.trgeo.2020.100474
- Wibowo, D. E., Endaryanta, E., Suryadwanti, N., Fajarwati, Y., Najib, M. I., & Widianti, A. (2023). Studying the use of plastic bag fiber, sand-gravel, and chalk-rice husk ash for layer reinforcement in increasing soil stability using loading test. 030020. https://doi.org/10.1063/5.0128853
- Wibowo, D. E., Fajarwati, Y., Suryadwanti, N., Setiawan, D., Raharjo, N. E., & Munawir, R. (2023). The effectiveness of soil reinforcement with mixed layer in increase bearing capacity using loading test. 030010. https://doi.org/10.1063/5.0128854
- Wibowo, D. E., Rahmadianto, H. W., & Endaryanta, E. (2021). Usaha Peningkatan Daya Dukung Tanah Lempung Menggunakan Layer Krikil, Anyaman Bambu dan Kombinasi Kolom-Layer Pasir. INERSIA: LNformasi Dan Ekspose Hasil Riset Teknik SIpil Dan Arsitektur, 17(1), 47–56. https://doi.org/10.21831/inersia.v17i1.40629
- Wibowo, D. E., S, S. D., & Kurniawan, R. (2020). Pengaruh penggunaan kolom pasir, layer pasir, dan terucuk bambu pada tanah lempung jenuh air terhadap penurunan tanah lempung menggunakan uji laboratorium. INERSIA, xvi(1), 64–73.
- Yin, Z., Ndiema, K. M., Lekalpure, R. L., & Kiptum, C. K. (2022). Numerical Study of Geotextile-Reinforced Flexible Pavement Overlying Low-Strength Subgrade. Applied Sciences, 12(20), 10325. https://doi.org/10.3390/app122010325
References
Abdullah, G. M. S. (2023). Performance of Enhanced Problematic Soils in Roads Pavement Structure: Numerical Simulation and Laboratory Study. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032595
Alimohammadi, H., Schaefer, V. R., Zheng, J., & Li, H. (2021). Performance evaluation of geosynthetic reinforced flexible pavement: a review of full-scale field studies. International Journal of Pavement Research and Technology, 14(1), 30–42. https://doi.org/10.1007/s42947-020-0019-y
Banerjee, S., Srivastava, M. V. K., Manna, B., & Shahu, J. T. (2022). A Novel Approach to the Design of Geogrid-Reinforced Flexible Pavements. International Journal of Geosynthetics and Ground Engineering, 8(2). https://doi.org/10.1007/s40891-022-00373-3
Hashem, D. M., & Abu-Baker, M. A. (2013). Numerical Modeling of Flexible Pavement Constructed on Expansive Soils. European International Journal of Science and Technology, 2(10). www.eijst.org.uk
Ghanizadeh, A. R., Salehi, M., & Jalali, F. (2022). Investigating the Effect of Lime Stabilization of Subgrade on the Fatigue & Rutting Lives of Flexible Pavements Using the Nonlinear Mechanistic-Empirical Analysis. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-022-02336-x
Kusuma, R. I., Mina, E., Fathonah, W., Wally, M. G., & Fajarwati, Y. (2022). Stabilisasi tanah dengan penambahan arang kayu terhadap nilai daya dukung CBR. INERSIA, 18(1), 72–82. https://doi.org/10.21831/inersia.v181
Muntohar, A. S. (2016). A Numerical Method of the Flexible Pavement Supported by SSC on Expansive Soil. Applied Mechanics and Materials, 845, 62–69. https://doi.org/10.4028/www.scientific.net/amm.845.62
Nur, K. N., Mahyuddin, Bachtiar, E., Tumpu, M., Mukrim, M. I., Irianto, Kadir, Y., Arifin, T. S. P., Ahmad, S. N., Masdiana, Hasmar Halim, & Syukuriah. (2021). Perancangan Perkerasan Jalan (Cetakan 1). Yayasan Kita Menulis.
Oloo, S. Y., Fredlund, D. G., & Gan, J. K.-M. (1997). Bearing capacity of unpaved roads. Canadian Geotechnical Journal, 34(3), 398–407. https://doi.org/10.1139/cgj-34-3-398
Reimer, D. J., 1992). Military Soils Engineering. Field Manual Headquarters, Department of the Army. Washington, DC. .
Rifqi, M., & Fitriani, H. (2020). Identifikasi Kerusakan Perkerasan Lentur Pada Ruas Jalan Soekarno – Hatta, Palembang. JURNAL SAINTIS, 20(01), 19–26. https://doi.org/10.25299/saintis.2020.vol20(01).4072
Shakhan, M. R., Topal, A., & Sengoz, B. (2022). Impact of Subgrade Strength on Pavement Performance. Deu Muhendislik Fakultesi Fen ve Muhendislik, 24(71), 501–508. https://doi.org/10.21205/deufmd.2022247115
Shirazi, M. G., Rashid, A. S. B. A., Bin Nazir, R., Rashid, A. H. B. A., Moayedi, H., Horpibulsuk, S., & Samingthong, W. (2020). Sustainable soil bearing capacity improvement using natural limited life geotextile reinforcement—a review. In Minerals (Vol. 10, Issue 5). MDPI AG. https://doi.org/10.3390/min10050479
Soares, L. W. O., Braga, R. M., Freitas, J. C. O., Ventura, R. A., Pereira, D. S. S., & Melo, D. M. A. (2015). The effect of rice husk ash as pozzolan in addition to cement Portland class G for oil well cementing. Journal of Petroleum Science and Engineering, 131, 80–85. https://doi.org/10.1016/j.petrol.2015.04.009
Undang-undang Republik Indonesia. (2009). UU Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan. https://www.dpr.go.id/dokjdih/document/uu/UU_2009_22.pdf
Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27. https://doi.org/10.1016/j.trgeo.2020.100474
Wibowo, D. E., Endaryanta, E., Suryadwanti, N., Fajarwati, Y., Najib, M. I., & Widianti, A. (2023). Studying the use of plastic bag fiber, sand-gravel, and chalk-rice husk ash for layer reinforcement in increasing soil stability using loading test. 030020. https://doi.org/10.1063/5.0128853
Wibowo, D. E., Fajarwati, Y., Suryadwanti, N., Setiawan, D., Raharjo, N. E., & Munawir, R. (2023). The effectiveness of soil reinforcement with mixed layer in increase bearing capacity using loading test. 030010. https://doi.org/10.1063/5.0128854
Wibowo, D. E., Rahmadianto, H. W., & Endaryanta, E. (2021). Usaha Peningkatan Daya Dukung Tanah Lempung Menggunakan Layer Krikil, Anyaman Bambu dan Kombinasi Kolom-Layer Pasir. INERSIA: LNformasi Dan Ekspose Hasil Riset Teknik SIpil Dan Arsitektur, 17(1), 47–56. https://doi.org/10.21831/inersia.v17i1.40629
Wibowo, D. E., S, S. D., & Kurniawan, R. (2020). Pengaruh penggunaan kolom pasir, layer pasir, dan terucuk bambu pada tanah lempung jenuh air terhadap penurunan tanah lempung menggunakan uji laboratorium. INERSIA, xvi(1), 64–73.
Yin, Z., Ndiema, K. M., Lekalpure, R. L., & Kiptum, C. K. (2022). Numerical Study of Geotextile-Reinforced Flexible Pavement Overlying Low-Strength Subgrade. Applied Sciences, 12(20), 10325. https://doi.org/10.3390/app122010325