Main Article Content

Abstract

Flexible pavement failures in Indonesia are primarily attributed to weak subgrade conditions, necessitating soil reinforcement measures. This study aimed to enhance soil-bearing capacity through soil reinforcement experiments utilizing a mixture of sand columns, rice husk ash, and cement. A prototype was constructed, including a 1×1×1 m steel box, an IWF steel frame, a dial gauge, a steel plate, and a proving ring, to apply a load to soil arranged within the iron box using a 3-ton hydraulic jack. The study focused on a clay soil type (following the AASHTO method) and conducted soil reinforcement in four scenarios. The result shows that in all scenarios involving a sand column, Scenario 1: 3% sand, 3% rice husk ash, and 6% cement obtained a qult is 0.23 kg/cm2 and BCR 114.94%; Scenario 2: 3% sand, 6% rice husk ash, and 3% cement obtained a qult is 0.12 kg/cm2 and BCR 11.49%; Scenario 3: 6% sand, 3% rice husk ash, and 3% cement obtained a qult is 0.14 kg/cm2 and BCR 26.44%; Scenario 4: 6% sand, 6% rice husk ash, and 0% cement obtained a qult is 0.24 kg/cm2 and a BCR of 116.09%. Notably, scenario 4, featuring a column composition of 6% sand, 6% rice husk ash, and 0% cement, achieved a significant increase in bearing capacity (qult) with a value of 0.24 kg/cm2 and a high Bearing Capacity Ratio (BCR) of 116.09%. Scenario 1 was the most effective in reducing moisture content by 4% relative to the original soil moisture content, with a mixture comprising 3% sand column, 3% rice husk ash, and 6% cement. The findings suggest that applying soil columns can enhance the performance of flexible pavements.

Keywords

Bearing capacity Soil reinforcement Rice husk ash Bearing Capacity Ratio

Article Details

How to Cite
Fajarwati, Y., Dian Eksana Wibowo, Endaryanta, & Amalina, A. N. (2023). Laboratory Model Test on The Sand Column for Reinforcement System of Flexible Pavement. Teknisia, 28(2), 70–78. https://doi.org/10.20885/teknisia.vol28.iss2.art1

References

  1. Abdullah, G. M. S. (2023). Performance of Enhanced Problematic Soils in Roads Pavement Structure: Numerical Simulation and Laboratory Study. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032595
  2. Alimohammadi, H., Schaefer, V. R., Zheng, J., & Li, H. (2021). Performance evaluation of geosynthetic reinforced flexible pavement: a review of full-scale field studies. International Journal of Pavement Research and Technology, 14(1), 30–42. https://doi.org/10.1007/s42947-020-0019-y
  3. Banerjee, S., Srivastava, M. V. K., Manna, B., & Shahu, J. T. (2022). A Novel Approach to the Design of Geogrid-Reinforced Flexible Pavements. International Journal of Geosynthetics and Ground Engineering, 8(2). https://doi.org/10.1007/s40891-022-00373-3
  4. Hashem, D. M., & Abu-Baker, M. A. (2013). Numerical Modeling of Flexible Pavement Constructed on Expansive Soils. European International Journal of Science and Technology, 2(10). www.eijst.org.uk
  5. Ghanizadeh, A. R., Salehi, M., & Jalali, F. (2022). Investigating the Effect of Lime Stabilization of Subgrade on the Fatigue & Rutting Lives of Flexible Pavements Using the Nonlinear Mechanistic-Empirical Analysis. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-022-02336-x
  6. Kusuma, R. I., Mina, E., Fathonah, W., Wally, M. G., & Fajarwati, Y. (2022). Stabilisasi tanah dengan penambahan arang kayu terhadap nilai daya dukung CBR. INERSIA, 18(1), 72–82. https://doi.org/10.21831/inersia.v181
  7. Muntohar, A. S. (2016). A Numerical Method of the Flexible Pavement Supported by SSC on Expansive Soil. Applied Mechanics and Materials, 845, 62–69. https://doi.org/10.4028/www.scientific.net/amm.845.62
  8. Nur, K. N., Mahyuddin, Bachtiar, E., Tumpu, M., Mukrim, M. I., Irianto, Kadir, Y., Arifin, T. S. P., Ahmad, S. N., Masdiana, Hasmar Halim, & Syukuriah. (2021). Perancangan Perkerasan Jalan (Cetakan 1). Yayasan Kita Menulis.
  9. Oloo, S. Y., Fredlund, D. G., & Gan, J. K.-M. (1997). Bearing capacity of unpaved roads. Canadian Geotechnical Journal, 34(3), 398–407. https://doi.org/10.1139/cgj-34-3-398
  10. Reimer, D. J., 1992). Military Soils Engineering. Field Manual Headquarters, Department of the Army. Washington, DC. .
  11. Rifqi, M., & Fitriani, H. (2020). Identifikasi Kerusakan Perkerasan Lentur Pada Ruas Jalan Soekarno – Hatta, Palembang. JURNAL SAINTIS, 20(01), 19–26. https://doi.org/10.25299/saintis.2020.vol20(01).4072
  12. Shakhan, M. R., Topal, A., & Sengoz, B. (2022). Impact of Subgrade Strength on Pavement Performance. Deu Muhendislik Fakultesi Fen ve Muhendislik, 24(71), 501–508. https://doi.org/10.21205/deufmd.2022247115
  13. Shirazi, M. G., Rashid, A. S. B. A., Bin Nazir, R., Rashid, A. H. B. A., Moayedi, H., Horpibulsuk, S., & Samingthong, W. (2020). Sustainable soil bearing capacity improvement using natural limited life geotextile reinforcement—a review. In Minerals (Vol. 10, Issue 5). MDPI AG. https://doi.org/10.3390/min10050479
  14. Soares, L. W. O., Braga, R. M., Freitas, J. C. O., Ventura, R. A., Pereira, D. S. S., & Melo, D. M. A. (2015). The effect of rice husk ash as pozzolan in addition to cement Portland class G for oil well cementing. Journal of Petroleum Science and Engineering, 131, 80–85. https://doi.org/10.1016/j.petrol.2015.04.009
  15. Undang-undang Republik Indonesia. (2009). UU Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan. https://www.dpr.go.id/dokjdih/document/uu/UU_2009_22.pdf
  16. Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27. https://doi.org/10.1016/j.trgeo.2020.100474
  17. Wibowo, D. E., Endaryanta, E., Suryadwanti, N., Fajarwati, Y., Najib, M. I., & Widianti, A. (2023). Studying the use of plastic bag fiber, sand-gravel, and chalk-rice husk ash for layer reinforcement in increasing soil stability using loading test. 030020. https://doi.org/10.1063/5.0128853
  18. Wibowo, D. E., Fajarwati, Y., Suryadwanti, N., Setiawan, D., Raharjo, N. E., & Munawir, R. (2023). The effectiveness of soil reinforcement with mixed layer in increase bearing capacity using loading test. 030010. https://doi.org/10.1063/5.0128854
  19. Wibowo, D. E., Rahmadianto, H. W., & Endaryanta, E. (2021). Usaha Peningkatan Daya Dukung Tanah Lempung Menggunakan Layer Krikil, Anyaman Bambu dan Kombinasi Kolom-Layer Pasir. INERSIA: LNformasi Dan Ekspose Hasil Riset Teknik SIpil Dan Arsitektur, 17(1), 47–56. https://doi.org/10.21831/inersia.v17i1.40629
  20. Wibowo, D. E., S, S. D., & Kurniawan, R. (2020). Pengaruh penggunaan kolom pasir, layer pasir, dan terucuk bambu pada tanah lempung jenuh air terhadap penurunan tanah lempung menggunakan uji laboratorium. INERSIA, xvi(1), 64–73.
  21. Yin, Z., Ndiema, K. M., Lekalpure, R. L., & Kiptum, C. K. (2022). Numerical Study of Geotextile-Reinforced Flexible Pavement Overlying Low-Strength Subgrade. Applied Sciences, 12(20), 10325. https://doi.org/10.3390/app122010325