Main Article Content

Abstract

On November 21, 2022, a 5.6 magnitude earthquake caused a landslide on one of the slopes in Cibeureum, Cianjur district. To repair the slope, reinforcement is necessary to achieve stability values that can withstand future earthquakes. One method for enhancing slope stability is soil nailing. Various soil nailing installation angles were analyzed to find the optimal design for the Cibeureum slope. Using the Plaxis 2D V20 program, the safety factor of the original slope without an earthquake was found to be 1.62. Increasing the installation angle of the soil nails from 10°, 15°, to 20° improved the safety factor, but the increase was not significant because the initial installation point was far from the slip line, requiring a nail length of 50 meters. The best configuration, yielding the highest safety value, was achieved with a modified slope angle of 19° and soil nails with a 50 m length installed at a 20° angle. This configuration produced a safety factor of 2.55 without an earthquake and 1.102 with an earthquake, as calculated using the Plaxis 2D V20 program.

Keywords

slope stability Soil reinforcement Soil nailing Plaxis 2D Finite element method

Article Details

How to Cite
Azmi Aufa Iftikhar, & Hanindya Kusuma Artati. (2024). Finite element modelling of soil nailing inclination effect on slope stability: Cibeureum slope case study. Teknisia, 29(1), 14–23. Retrieved from https://journal.uii.ac.id/teknisia/article/view/34504

References

  1. Alsubal, S., Harahap, I. H., & Babangida, N. M. (2017). A Typical Design of Soil Nailing System for Stabilizing a Soil Slope. Indian Journal of Science and Technology, 10(4), 1-7. https://dx.doi.org/10.17485/ijst/2017/v10i4/110891
  2. Badan Standardisasi Nasional. (2017). SNI 8460:2017 Persyaratan Perancangan Geoteknik. Retrieved from https://binamarga.pu.go.id/
  3. Dewedree, S., & Jusoh, S.N. (2019). Slope Stability Analysis Under Different Soil Nailing Parameters Using The SLOPE/W Software. Journal of Physics, 180(2), 1-7. doi :10.1088/1742-6596/1174/1/012008
  4. Elahi, T.E., Islam, M.A., & Islam, M.S. (2022). Assessment of Soil Nailing on the Stability of Slopes Using Numerical Approach. Geotechnics, 2(1), 615-634. https://doi.org/10.3390/geotechnics2030030
  5. Fauzi, I.M., & Hamdan, I.N. (2019). Analisis Stabilitas Lereng dengan Perkuatan Geotekstil Woven Akibat Pengaruh Termal Menggunakan Metode Elemen Hingga. Jurnal Teknik Sipil, 5(2), 61-72. https://doi.org/10.26760/rekaracana.v5i2.61
  6. Federal Highway Administration. (2015). FHWA-NHI-14-007. Retrieved from https://www.fhwa.dot.gov/engineering/geotech/pubs/nhi14007.pdf
  7. Griffiths, D. V., & Lane, P. A. (1999). Slope Stability Analysis by Finite Elements. Géotechnique. 49(3), 387-403. http://dx.doi.org/10.1680/geot.1999.49.3.387
  8. Imbar, E. R. B., Mandagi, A. T., & Rondonuwu, S. G. (2019). Analisis Stabilitas Lereng Dengan Perkuatan Soil Nailing Menggunakan Program Slope/W dan Geostructural. Jurnal Tekno, 17(72), 59-64. ISSN : 0215-9617
  9. Jurgens, H., & Henke, S. (2021). The Design of Geotechnical Structures Using Numerical MethodsShear Parameter Reduction Including Structural Elements. International Journal of Earth & Environmental Sciences, 6(177), 1-10. https://doi.org/10.15344/2456-351X/2021/177
  10. Kusuma, R. I., & Mina, E. (2015). Analisis Stabilitas Lereng dan Perencanaan Soil Nailing dengan Software Geostudio 2017. Fondasi:Jurnal Teknik Sipil, 4(1), 1-12. http://dx.doi.org/10.36055/jft.v4i1.1219
  11. Look, B.G. (2014). Handbook of Geotechnical Investigation and Design Tables. London, UK: Taylor & Francis/Balkema.
  12. Mangnejo, D. A., Oad, S.J., Kalhoro, S.A., Ahmed, S., Laghari, F.H., & Siyal, Z.A. (2019). Numerical Analysis of Soil Slope Stabilization by Soil Nailing Technique. Engineering, Technology, & Applied Science Research, 9(4), 4469-4473. https://doi.org/10.48084/etasr.2859
  13. Maulidha, S.F., Satrya, T.R., & Lastiasi, Y. (2022). Geotechnical Mapping for Soil Physical and Mechanical Parameters and Hard Soil Depth in Badung Regency. Journal of Infrastructure and Facility Asset Management, 4(2), 89-104. http://dx.doi.org/10.12962/jifam.v4i2.14371
  14. Mulyana, B., Pamungkas, R.A., Abdurrasyid, A. (2023). Desa Tanggap Darurat Melalui Pemeriksaan Kesehatan dan Edukasi Penatalaksanaan Kegawatdaruratan Bencana di Ciherang Pacet Cianjur Jawa Barat. Jurnal Abdi Masyarakat Indonesia, 3(2), 563-570. https://doi.org/10.54082/jamsi.679
  15. Rahman, M.M. (2020). Foundation Design using Standard Penetration Test (SPT) N-Value. Retrieved from https://www.researchgate.net/publication/318110370_Foundation_Design_using_Standard_Penetration_Test_SPT_N-value
  16. Setyanto., Zakaria, A., & Permana, G.W. (2016). Analisis Stabilitas Lereng dan Penanganan Longsoran Menggunakan Metode Elemen Hingga Plaxis V.8.2. Jurnal Rekayasa, 20(2), 119-138. http://repository.lppm.unila.ac.id/id/eprint/3119
  17. Standyarto, A.N., Prayitno, A.Y., & Prayitno, D. (2023). Stabilisasi Lereng dengan Aplikasi Soil Nailing pada Area Galian Dalam dan Kemiringan Curam. Jurnal Jalan-Jembatan, 40(2), 104-113. https://doi.org/10.58499/jatan.v40i2.1193
  18. Sulistyowati, T., Agustawijaya, D.S., Muchtaranda, I.H., Prabowo, A., Muhajirah., & Ngudiyono. (2022). Simulasi Beban Runtuh Lereng dengan Metode Elemen Hingga Menggunakan Program Abaqus SE (Studi Kasus Lereng Villa Senggigi). Jurnal Konstruksia, 13(2), 23-32. https://doi.org/10.24853/jk.13.2.23-32
  19. Warman, R.S. (2019). Kumpulan Korelasi Parameter Geoteknik dan Fondasi. Retrieved From https://binamarga.pu.go.id/
  20. Yusri, D., Setiawan, A., Adwiyah, R., & Mulyati, H. (2023). Studi Identifikasi Relokasi atau Rekonstruksi Tempat Tinggal Sebagai Pilihan Penanganan Pasca Gempa Cianjur 2022 Berbasis Perspektif Masyarakat. Risalah Kebijakan Pertanian dan Lingkungan, 10(2), 75-87. https://doi.org/10.29244/jkebijakan.v10i2.48467