Main Article Content

Abstract

Singaran Pati District, Bengkulu City, is located in an active subduction zone, making it prone to seismic activity. However, to date, there is no detailed microzonation map available to assess local vulnerability to earthquake shocks. This study aims to produce a microzonation map based on shear wave velocity (Vs) and Ground Amplification Factor (GAF) parameters as indicators of soil resistance. Vs values are calculated sequentially at depths of Vs10, Vs20, Vs30, Vs40, and Vs50 using spectral inversion methods. Soil site classification is based on NEHRP standards. Spatial interpolation uses the Inverse Distance Weighting (IDW) method to map parameter distribution. Results show that Vs velocity increases with depth, with a dominance of Class D sites (moderate soil), followed by Class C (very dense soil and soft rock), and a small portion of Class B (moderate rock). The GAF map identifies points with the highest amplification that are at high risk of damage due to earthquakes. The maximum Ground Amplification Factor (GAF) value is shown in red on the map, with a value of 2.0, while the minimum value is shown in green, representing a value of 1.0. This condition indicates that some areas in Singaran Pati Subdistrict have a significant potential for earthquake impact. Therefore, the use of microzonation maps is crucial as a basis for structural building planning and seismic risk mitigation in the Singaran Pati area.

Keywords

shear wave velocity Ground Amplification Factor (GAF) Soil Site Class Microzoning Singaran Pati Sub-district

Article Details

How to Cite
Dhanty Kirana, V., Mase, L. Z., Supriani, F., Misliniyati, R., & Amri, K. (2025). Microzonation of soil resistance using shear wave velocity (Vs) for earthquake disaster mitigation in Singaran Pati District, Bengkulu City. Teknisia, 30(2), 73–83. https://doi.org/10.20885/teknisia.vol30.iss2.art2

References

  1. Arifudin, A. M. (2021). Kecepatan Gelombang Geser (Vs) dan Ketebalan Sedimen (H) di Kabupaten Klaten dari Data Mikrotremor. Teknisia, XXVI(1), 52–60. https://doi.org/https://doi.org/10.20885/teknisia.vol26.iss1.art6
  2. Bustari, A. A., & Wibowo, N. B. (2023). Pemetaan sebaran nilai Vs30, faktor amplifikasi tanah, dan peak ground acceleration wilayah Bantul timur. Cakrawala Jurnal Ilmiah Bidang Sains, 1(2). https://doi.org/10.28989/cakrawala.v1i2.1436
  3. Demulawa, M., & Daruwati, I. (2021). Analisis Frekuensi Natural dan Potensi Amplifikasi Menggunakan Metode HVSR (Studi Kasus: Kampus 4 Universitas Negeri Gorontalo). Jurnal Ilmiah Edu Research, 10(1), 59–63. https://doi.org/https://doi.org/https://doi.org/10.30606/jer.v10i1.1060
  4. Farid, M., & Mase, L. Z. (2020). Implementation of seismic hazard mitigation on the basis of ground shear strain indicator for spatial plan of Bengkulu city, Indonesia. International Journal of GEOMATE, 18, 199–207. https://doi.org/10.21660/2020.69.24759
  5. Janah, M. A., Katriani, L., Wibowo, N. B., & Darmawan, D. (2022). Study of Earthquake Hazard Index Using The Surface Shaking Intensity Method in Yogyakarta and Central Java. Jurnal Ilmu Fisika Dan Terapannya, 9, 37–42. https://www.indonesia-
  6. Makmur, E., Effendi, R., & Rusydi, M. (2019). Determination of Soil Dynamics Parameters Using Microtremor Data In Sedoa Village Sub-District Lore North of Poso District. 18(1), 36–46. https://doi.org/https://doi.org/10.22487/gravitasi.v18i1.13308
  7. Mase, L. Z. (2017). Liquefaction Potential Analysis Along Coastal Area of Bengkulu Province due to the 2007 Mw 8.6 Bengkulu Earthquake. Journal of Engineering and Technological Sciences, 49(6), 721–736. https://doi.org/10.5614/j.eng.technol.sci.2017.49.6.2
  8. NEHRP. (2003). FEMA P-2082-1: NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (Vol. 1).
  9. Priani, A. A., Misliniyati, R., Amri, K., Mase, L. Z., & Hardiansyah. (2024). Seismic Response Analysis In The Singaran Pati Sub-District Area of Bengkulu City Using Equivalent Linear And Non-Linear Approaches. Reka Buana, 9(2), 161–176. https://doi.org/https://doi.org/https://doi.org/10.33366/rekabuana.v9i2.6101
  10. Qodri, M. F., Mase, L. Z., & Likitlersuang, S. (2019). Simulation of Seismic Ground Response at Bangkok Subsoil due to Si Sawat Fault. National Convention on Civil Engineering, 1–10.
  11. Rahman, A. S., Sutiyono, S., Wardaningsih, K., Istofiyah, I., Cindiwati, C., & Alfiandy, S. (2024). Analysis of Potential Soil Movement Based on Ground Shear Strain (GSS) for Bekasi Region. Buletin GAW Bariri, 5(2), 7–14. https://doi.org/10.31172/bgb.v5i2.122
  12. Salsabil, A. R., Hilyah, A., Purwanto, S., & Fajar, M. H. M. (2018). Zonasi Bahaya Kegempaan Akibat Patahan Aktif Di Wilayah Jawa Timur Dengan Pendekatan Deterministik Menggunakan Perhitungan Atenuasi Chiou-Youngs 2014 NGA. Jurnal Geosaintek, 4(3), 103. https://doi.org/10.12962/j25023659.v4i3.4508
  13. Sari, E. Y., Mase, L. Z., Hardiansyah, H., Misliniyati, R., & Amri, K. (2024). Implementasi Metode Linier Ekuivalen dan Nonlinier Dalam Memprediksi Respon Seismik Area Kampung Melayu, Kota Bengkulu. Jurnal Geosaintek, 10(2), 159–172. https://doi.org/10.12962/j25023659.v10i2.1723
  14. Sugianto, N., & Refrizon. (2021). Struktur Kecepatan Gelombang Geser (Vs) Di Daerah Rawan Gerakan Tanah (Longsor) Jalan Lintas Kabupaten Bengkulu Tengah-Kepahiang. Indonesian Journal of Applied Physics, 11(2), 134. https://doi.org/https://doi.org/10.13057/ijap.v11i2.41699
  15. Susilanto, P., Ngadmanto, D., Sunardi, B., & Rohadi, S. (2018). Shear-wave (VS) Velocity Analysis as Efforts Towards Mitigating Earthquake Disaster in Kulonprogo, the Special Region of Yogyakarta. Jurnal Lingkungan Dan Bencana Geologi, 41–50. https://doi.org/https://doi.org/10.34126/jlbg.v10i2.215
  16. Wibowo, N. B., & Huda, I. (2020). Analysis of Amplification, Seismic Vulnerability Index and Soil Clasification Based on Vs30 In Yogyakarta. Buletin Meteorologi, Klimatologi, Dan Geofisika, 1, 21–31. http://usgs.maps.arcgis.com/apps/we
  17. Zebua, A. W. (2018). Analisis Gaya Gempa Bangunan Rumah Tinggal Di Wilayah Gempa Tinggi. Jurnal Teknik Sipil Siklus, 4(1), 23. https://doi.org/https://doi.org/10.31849/siklus.v4i1.1128