Main Article Content

Abstract

There is an increasing need for practical tools that help users determine the appropriate mix composition of concrete incorporating ceramic waste as a partial fine aggregate replacement. Such tools can simplify the process of designing environmentally friendly concrete while ensuring that the resulting material meets the required strength standards. This study aims to determine the percentage of concrete mixture utilizing ceramic waste as a substitute for fine aggregates in concrete, assess its impact on concrete compressive strength using the RMSE method, and visualize it through Android modulator technology. Compressive strength tests were based on the previous research study, with curing intervals of 7, 14, and 28 days. The concrete quality test results indicate that concrete mixed with ceramic waste as a partial replacement for fine aggregates produces a strength that meets the standard for normal concrete, ranging between 30 - 40 MPa. A polynomial regression model synthesis based on the available laboratory data demonstrated good reliability, with an RMSE value of 0.172. Furthermore, using an Android emulator technology named BetonKU, the application successfully visualized the concrete mix design composition incorporating ceramic waste as a fine aggregate substitute according to the input data for the designed concrete strength.

Keywords

Concrete Ceramics Waste Fine Aggregate Construction Android Emulator construction

Article Details

How to Cite
Andaryati, A., Suharso, A. B. K., Raharja, D. S., & Saurina, N. (2025). Optimizing ceramic waste content in concrete mix design: model development and android application. Teknisia, 30(2), 94–101. https://doi.org/10.20885/teknisia.vol30.iss2.art4

References

  1. Al-Ruqaishi, A. Z. M., Allamki, M., & Poloju, K. K. (2019). The advancement of ceramic waste in concrete. International Journal of Advanced and Applied Sciences, 6(11), 102–108.
  2. Baraldi, L. (2016). World production and consumption of ceramic tiles. In Oceania (Vol. 56).
  3. Basha, S. I., Ali, M. R., Al-Dulaijan, S. U., & Maslehuddin, M. (2020). Mechanical and thermal properties of lightweight recycled plastic aggregate concrete. Journal of Building Engineering, 32, 101710. https://doi.org/10.1016/j.jobe.2020.101710
  4. Basuki, E. P., & Aquariza, N. R. (2019). The Effectiveness of Utilizing Nox Android Emulator for Interactive Teaching on Students’ Writing Compentence and Involvement. Tell : Teaching of English Language and Literature Journal, 7(2), 57. https://doi.org/10.30651/tell.v7i2.3326
  5. BSN. Spesifikasi Bahan Bangunan Bagian A (Bahan Bangunan Bukan Logam). , Pub. L. No. SK SNI S-04-1989-F, Badan Standardisasi Nasional (1989).
  6. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
  7. Guerra-Manzanares, A., Bahsi, H., & Nõmm, S. (2019). Differences in android behavior between real device and emulator: a malware detection perspective. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), 399–404. IEEE.
  8. Haque, M. R., Mostafa, M. S., & Sah, S. K. (2021). Performance Evaluation for Mechanical Behaviour of Concrete Incorporating Recycled Plastic Bottle Fibers as Locally Available Materials. Civil Engineering Journal, 7(4), 713–719. https://doi.org/10.28991/cej-2021-03091684
  9. Hasanuddin, A., & Kriswardhana, W. (2021). Analisis Hubungan Geometrik Jalan Terhadap Keselamatan Jalan Bypass Mojokerto Km Sby 51-63. PADURAKSA: Jurnal Teknik Sipil Universitas Warmadewa, 10(2), 253–265.
  10. Ismawati, N. A. A., & Andaryati. (2024). Pengaruh Penggunaan Limbah Keramik Sebagai Bahan Pengganti Agregat Halus Terhadap Karakteristik Beton. Axial : Jurnal Rekayasa Dan Manajemen Konstruksi, 12(1). https://doi.org/10.30742/axial.v12i1.3672
  11. Jackiewicz-Rek, W., Załęgowski, K., Garbacz, A., & Bissonnette, B. (2015). Properties of Cement Mortars Modified with Ceramic Waste Fillers. Procedia Engineering, 108, 681–687. https://doi.org/10.1016/j.proeng.2015.06.199
  12. Liu, F., Liu, J., Ma, B., Huang, J., & Li, H. (2015). Basic properties of concrete incorporating recycled ceramic aggregate and ultra-fine sand. Journal of Wuhan University of Technology-Mater. Sci. Ed., 30(2), 352–360.
  13. MS ISO 13006. Ceramic tiles -. Definitions, classification, characteristics and marking. , Pub. L. No. MS ISO 13006: 2003, Department of Standards Malaysia (2014).
  14. Saikia, N., & de Brito, J. (2014). Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, 52, 236–244. https://doi.org/10.1016/j.conbuildmat.2013.11.049
  15. Singh, A., & Srivastava, V. (2018). Ceramic waste in concrete—A review. Recent Advances on Engineering, Technology and Computational Sciences (RAETCS), 1–6.
  16. SNI ISO 13006. Ubin keramik - Definisi, klasifikasi, karakteristik dan penandaan. , Pub. L. No. SNI ISO 13006:2010, Badan Standarisasi Nasional (2010). Indonesia.
  17. Yadav, R., Routiya, G., & Jethwani, N. (2017). Effective replacement of cement for establishing sustainable concrete using ceramic waste. International Journal of Advance Research in Science and Engineering, 6(2), 75–80.
  18. Zimbili, O., Salim, W., & Ndambuki, M. (2014). A review on the usage of ceramic wastes in concrete production. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 8(1), 91–95.