Main Article Content
Abstract
Liquefaction is a major geotechnical hazard that can severely damage infrastructure in earthquake-prone areas. This study evaluates the liquefaction potential of volcanic–colluvial deposits in Semarang Regency, Central Java, using Standard Penetration Test (SPT) data and the Simplified Procedure of Seed and Idriss (1971). Cyclic Stress Ratio (CSR) and Cyclic Resistance Ratio (CRR) were computed to obtain Factors of Safety (FS) under three earthquake scenarios (Mw = 5.0, 5.9, and 6.5). Results show that for Mw = 6.5, the shallow sandy layers at 0-3 m have FS = 0.07-0.21 (highly susceptible), while the 4.5-9 m interval is FS = 0.8-0.96 (marginal to near-threshold) and and the >10 m strata remain stable (FS > 1.2). For Mw = 5.9, shallow liquefaction is confined to 0-3 m (FS = 0.09-0.27), with the 4.5-9 m zone showing FS = 1.0-1.2 (marginal to stable). Even for Mw = 5.0, the 0-3 m layer yields FS = 0.14-0.41, indicating liquefaction susceptibility, whereas deeper layers are stable (FS > 1.0-1.2). These findings indicate that loose, saturated silty-sand layers with shallow perched groundwater are the most critical to cyclic softening. The site is underlain by reworked volcanic-colluvial materials derived from Mount Ungaran, characterized by fine-grained, near-saturated deposits within the upper 10 m. Compared with previous studies in northern Semarang, this study highlights the moderate liquefaction susceptibility of southern volcanic-colluvial terrains, an area rarely analyzed in Central Java and provides practical insights for toll-road foundation design and mitigation strategies in similar geological settings.
Keywords
Article Details
Copyright (c) 2025 Desiana Vidayanti, Ratnaningsih, Det Komerdevi, Pintor Tua Simatupang, Eka Nur Fitriani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Under the following term:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
- Can, A., Celenk, B., Mursal, U., Tunar Özcan, N., & Gokceoglu, C. (2024). Performance Assessment of Deep Soil Mixing Columns Against Liquefaction Problem in a Railway Embankment. Indian Geotechnical Journal, 54(6), 2240–2258. https://doi.org/10.1007/s40098-023-00860-y
- D’Apuzzo, M., Evangelisti, A., Modoni, G., Spacagna, R. L., Paolella, L., Santilli, D., & Nicolosi, V. (2020). Simplified Approach for Liquefaction Risk Assessment of Transportation Systems: Preliminary Outcomes. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 12255 LNCS(September), 130–145. https://doi.org/10.1007/978-3-030-58820-5_10
- Dash, H. K., & Sitharam, T. G. (2009). Undrained cyclic pore pressure response of sand-silt mixtures: Effect of nonplastic fines and other parameters. Geotechnical and Geological Engineering, 27(4), 501–517. https://doi.org/10.1007/S10706-009-9252-5
- Fajarwati, Y., Sasmayaputra, N. A., Wibowo, D. E., & Endaryanta. (2025). Evaluating Liquefaction Potential and Ground Reinforcement Strategies for Railway Infrastructure in Coastal South Sulawesi. IOP Conference Series: Earth and Environmental Science, 1488(1). https://doi.org/10.1088/1755-1315/1488/1/012077
- Gallant, A. P., Montgomery, J., Mason, H. B., Hutabarat, D., Reed, A. N., Wartman, J., … Yasin, W. (2020). The Sibalaya flowslide initiated by the 28 September 2018 MW 7.5 Palu-Donggala, Indonesia earthquake. Landslides, 17(8), 1925–1934. https://doi.org/10.1007/s10346-020-01354-1
- Greef, J. de, & Lengkeek, H. J. (2018). Transition and thin layer corrections for CPT based liquefaction analysis. In PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CONE PENETRATION TESTING (CPT’18) (pp. 317–322).
- Halder, A., Das, K., Nandi, S., & Bandyopadhyay, K. (2022). A comparative study on liquefaction assessment of Rajarhat area of Kolkata by using different approaches. Cone Penetration Testing 2022 - Proceedings of the 5th International Symposium on Cone Penetration Testing, CPT 2022, 955–960. https://doi.org/10.1201/9781003308829-143
- Hashemi, M., & Nikudel, M. R. (2016). Application of Dynamic Cone Penetrometer test for assessment of liquefaction potential. Engineering Geology, 208, 51–62. https://doi.org/10.1016/j.enggeo.2016.04.013
- Huang, C., Sui, Z., Wang, L., & Liu, K. (2016a). Mitigation of Soil Liquefaction Using Stone Columns: An Experimental Investigation. Marine Georesources & Geotechnology, 34(3), 244–251. https://doi.org/10.1080/1064119X.2014.1002872
- Huang, C., Sui, Z., Wang, L., & Liu, K. (2016b). Mitigation of Soil Liquefaction Using Stone Columns: An Experimental Investigation. Marine Georesources and Geotechnology, 34(3), 244–251. https://doi.org/10.1080/1064119X.2014.1002872
- Jefferies, M., & Been, K. (2016). Soil Liquefaction: A Critical State Apporach. (William Powrie, Ed.) (Second Edi). CRC Press.
- Kargar, P., & Osouli, A. (2024). Liquefiable Interlayer Effects in a Liquefaction-Susceptible Site. In Geo-Congress 2024 (pp. 250–258). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784485316.027
- Kim, J., Athanasopoulos-Zekkos, A., & Zekkos, D. (2024). The Effect of Initial Static Shear Stress on Liquefaction Triggering of Coarse-Grained Materials. Journal of Geotechnical and Geoenvironmental Engineering, 150(10). https://doi.org/10.1061/JGGEFK.GTENG-12282
- Kusumah, A. W. (2018). Di Balik Pesona Palu - Bencana Melanda Geologi Menata. (Andiani, O. Oktariadi, & A. Kurnia, Eds.) (Vol. 1). Badan Geologi.
- Moderie, J., & Rippe, A. H. (2009). Seismic Hazards and Construction Vibrations. In Contemporary Topics in Deep Foundations (pp. 327–334). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/41021(335)41
- Muduli, P. K., Karna, P., & Samal, M. R. (2020). Evaluation of Liquefaction Potential of Coastal Alluvium Using SPT Data - A Comparative Case Study. IOP Conference Series: Materials Science and Engineering, 970(1). https://doi.org/10.1088/1757-899X/970/1/012033
- Nur, S. H., Hafid, A., & Iswanto, E. R. (2020). Liquefaction potentials analysis of sandy gravel on the sediment deposit of the Serpong formation. IOP Conference Series: Earth and Environmental Science, 419(1). https://doi.org/10.1088/1755-1315/419/1/012081
- Nurdin, S. (2019). Nalodo dan Konsep Rehabilitasi dan Rekonstruksi Saluran Irigasi Gumbasa.
- Pal, S., & Deb, K. (2018). Effect of Stiffness of Stone Column on Drainage Capacity during Soil Liquefaction. International Journal of Geomechanics, 18(3), 1–11. https://doi.org/10.1061/(asce)gm.1943-5622.0001108
- Patel, N., Ahamad, M. N., & Singh, V. P. (2024). A Comprehensive Study on Seismic Site Characterization and Liquefaction Susceptibility Assessment (LSA) through Multi-channel Analysis of Surface Wave (MASW), 0–12. Retrieved from https://www.researchsquare.com/article/rs-4388341/v1
- Purba, S. F., Ismanti, S., & Setiawan, A. F. (2023). Liquefaction potential analysis in Yogyakarta Bawen Toll Road section 3. E3S Web of Conferences, 429, 1–11. https://doi.org/10.1051/e3sconf/202342904020
- Rahayu, A., Uno, I., Hidayat, N., Dwijaka, A., & Yusuf, M. (2022). Potential of Liquifaction at Nasanapura Hospital Petobo Village Palu City. IOP Conference Series: Earth and Environmental Science, 1075(1). https://doi.org/10.1088/1755-1315/1075/1/012028
- Salem, Z. Ben, Frikha, W., & Bouassida, M. (2017). Effects of Densification and Stiffening on Liquefaction Risk of Reinforced Soil by Stone Columns. Journal of Geotechnical and Geoenvironmental Engineering, 143(10), 1–6. https://doi.org/10.1061/(asce)gt.1943-5606.0001773
- Sinha, S. K., Ziotopoulou, K., & Kutter, B. L. (2024). Effects of Excess Pore Pressure Redistribution in Liquefiable Layers. Journal of Geotechnical and Geoenvironmental Engineering, 150(4). https://doi.org/10.1061/JGGEFK.GTENG-11857
- Taslimian, R., Noorzad, A., & Maleki Javan, M. R. (2023). Numerical Analysis of Liquefaction Phenomenon Considering Irregular Topographic Interfaces Between Porous Layers. Journal of Earthquake Engineering, 27(5), 1095–1109. https://doi.org/10.1080/13632469.2022.2038727
- Tini, T., Tohari, A., & Iryanti, M. (2017). Analisis Potensi Likuifaksi Akibat Gempa Bumi Menggunakan Metode SPT (Standar Penetration Test) Dan Cpt (Cone Penetration Test) Di Kabupaten Bantul, Yogyakarta. Wahana Fisika, 2(1), 8. https://doi.org/10.17509/wafi.v2i1.7022
- Wicaksono, A., Hardiyatmo, H. C., & Satyarno, I. (2024). Evaluation of the Impact of Liquefaction Potential on the Construction of the Solo - Yogyakarta - NYIA Kulon Toll Road. IOP Conference Series: Earth and Environmental Science, 1373(1). https://doi.org/10.1088/1755-
References
Can, A., Celenk, B., Mursal, U., Tunar Özcan, N., & Gokceoglu, C. (2024). Performance Assessment of Deep Soil Mixing Columns Against Liquefaction Problem in a Railway Embankment. Indian Geotechnical Journal, 54(6), 2240–2258. https://doi.org/10.1007/s40098-023-00860-y
D’Apuzzo, M., Evangelisti, A., Modoni, G., Spacagna, R. L., Paolella, L., Santilli, D., & Nicolosi, V. (2020). Simplified Approach for Liquefaction Risk Assessment of Transportation Systems: Preliminary Outcomes. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 12255 LNCS(September), 130–145. https://doi.org/10.1007/978-3-030-58820-5_10
Dash, H. K., & Sitharam, T. G. (2009). Undrained cyclic pore pressure response of sand-silt mixtures: Effect of nonplastic fines and other parameters. Geotechnical and Geological Engineering, 27(4), 501–517. https://doi.org/10.1007/S10706-009-9252-5
Fajarwati, Y., Sasmayaputra, N. A., Wibowo, D. E., & Endaryanta. (2025). Evaluating Liquefaction Potential and Ground Reinforcement Strategies for Railway Infrastructure in Coastal South Sulawesi. IOP Conference Series: Earth and Environmental Science, 1488(1). https://doi.org/10.1088/1755-1315/1488/1/012077
Gallant, A. P., Montgomery, J., Mason, H. B., Hutabarat, D., Reed, A. N., Wartman, J., … Yasin, W. (2020). The Sibalaya flowslide initiated by the 28 September 2018 MW 7.5 Palu-Donggala, Indonesia earthquake. Landslides, 17(8), 1925–1934. https://doi.org/10.1007/s10346-020-01354-1
Greef, J. de, & Lengkeek, H. J. (2018). Transition and thin layer corrections for CPT based liquefaction analysis. In PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CONE PENETRATION TESTING (CPT’18) (pp. 317–322).
Halder, A., Das, K., Nandi, S., & Bandyopadhyay, K. (2022). A comparative study on liquefaction assessment of Rajarhat area of Kolkata by using different approaches. Cone Penetration Testing 2022 - Proceedings of the 5th International Symposium on Cone Penetration Testing, CPT 2022, 955–960. https://doi.org/10.1201/9781003308829-143
Hashemi, M., & Nikudel, M. R. (2016). Application of Dynamic Cone Penetrometer test for assessment of liquefaction potential. Engineering Geology, 208, 51–62. https://doi.org/10.1016/j.enggeo.2016.04.013
Huang, C., Sui, Z., Wang, L., & Liu, K. (2016a). Mitigation of Soil Liquefaction Using Stone Columns: An Experimental Investigation. Marine Georesources & Geotechnology, 34(3), 244–251. https://doi.org/10.1080/1064119X.2014.1002872
Huang, C., Sui, Z., Wang, L., & Liu, K. (2016b). Mitigation of Soil Liquefaction Using Stone Columns: An Experimental Investigation. Marine Georesources and Geotechnology, 34(3), 244–251. https://doi.org/10.1080/1064119X.2014.1002872
Jefferies, M., & Been, K. (2016). Soil Liquefaction: A Critical State Apporach. (William Powrie, Ed.) (Second Edi). CRC Press.
Kargar, P., & Osouli, A. (2024). Liquefiable Interlayer Effects in a Liquefaction-Susceptible Site. In Geo-Congress 2024 (pp. 250–258). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784485316.027
Kim, J., Athanasopoulos-Zekkos, A., & Zekkos, D. (2024). The Effect of Initial Static Shear Stress on Liquefaction Triggering of Coarse-Grained Materials. Journal of Geotechnical and Geoenvironmental Engineering, 150(10). https://doi.org/10.1061/JGGEFK.GTENG-12282
Kusumah, A. W. (2018). Di Balik Pesona Palu - Bencana Melanda Geologi Menata. (Andiani, O. Oktariadi, & A. Kurnia, Eds.) (Vol. 1). Badan Geologi.
Moderie, J., & Rippe, A. H. (2009). Seismic Hazards and Construction Vibrations. In Contemporary Topics in Deep Foundations (pp. 327–334). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/41021(335)41
Muduli, P. K., Karna, P., & Samal, M. R. (2020). Evaluation of Liquefaction Potential of Coastal Alluvium Using SPT Data - A Comparative Case Study. IOP Conference Series: Materials Science and Engineering, 970(1). https://doi.org/10.1088/1757-899X/970/1/012033
Nur, S. H., Hafid, A., & Iswanto, E. R. (2020). Liquefaction potentials analysis of sandy gravel on the sediment deposit of the Serpong formation. IOP Conference Series: Earth and Environmental Science, 419(1). https://doi.org/10.1088/1755-1315/419/1/012081
Nurdin, S. (2019). Nalodo dan Konsep Rehabilitasi dan Rekonstruksi Saluran Irigasi Gumbasa.
Pal, S., & Deb, K. (2018). Effect of Stiffness of Stone Column on Drainage Capacity during Soil Liquefaction. International Journal of Geomechanics, 18(3), 1–11. https://doi.org/10.1061/(asce)gm.1943-5622.0001108
Patel, N., Ahamad, M. N., & Singh, V. P. (2024). A Comprehensive Study on Seismic Site Characterization and Liquefaction Susceptibility Assessment (LSA) through Multi-channel Analysis of Surface Wave (MASW), 0–12. Retrieved from https://www.researchsquare.com/article/rs-4388341/v1
Purba, S. F., Ismanti, S., & Setiawan, A. F. (2023). Liquefaction potential analysis in Yogyakarta Bawen Toll Road section 3. E3S Web of Conferences, 429, 1–11. https://doi.org/10.1051/e3sconf/202342904020
Rahayu, A., Uno, I., Hidayat, N., Dwijaka, A., & Yusuf, M. (2022). Potential of Liquifaction at Nasanapura Hospital Petobo Village Palu City. IOP Conference Series: Earth and Environmental Science, 1075(1). https://doi.org/10.1088/1755-1315/1075/1/012028
Salem, Z. Ben, Frikha, W., & Bouassida, M. (2017). Effects of Densification and Stiffening on Liquefaction Risk of Reinforced Soil by Stone Columns. Journal of Geotechnical and Geoenvironmental Engineering, 143(10), 1–6. https://doi.org/10.1061/(asce)gt.1943-5606.0001773
Sinha, S. K., Ziotopoulou, K., & Kutter, B. L. (2024). Effects of Excess Pore Pressure Redistribution in Liquefiable Layers. Journal of Geotechnical and Geoenvironmental Engineering, 150(4). https://doi.org/10.1061/JGGEFK.GTENG-11857
Taslimian, R., Noorzad, A., & Maleki Javan, M. R. (2023). Numerical Analysis of Liquefaction Phenomenon Considering Irregular Topographic Interfaces Between Porous Layers. Journal of Earthquake Engineering, 27(5), 1095–1109. https://doi.org/10.1080/13632469.2022.2038727
Tini, T., Tohari, A., & Iryanti, M. (2017). Analisis Potensi Likuifaksi Akibat Gempa Bumi Menggunakan Metode SPT (Standar Penetration Test) Dan Cpt (Cone Penetration Test) Di Kabupaten Bantul, Yogyakarta. Wahana Fisika, 2(1), 8. https://doi.org/10.17509/wafi.v2i1.7022
Wicaksono, A., Hardiyatmo, H. C., & Satyarno, I. (2024). Evaluation of the Impact of Liquefaction Potential on the Construction of the Solo - Yogyakarta - NYIA Kulon Toll Road. IOP Conference Series: Earth and Environmental Science, 1373(1). https://doi.org/10.1088/1755-