Main Article Content
Abstract
This paper addresses the problem of the signal segmentation within a hierarchical Bayesian framework by using reversible jump MCMC sampling. The signal is modelled by piecewise constant MA processes where the numbers of segments, the position of abrupt, the order and the coefficients of the MA processes for each segment are unknown.
The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow to compute some interesting features of the a posterior distribution. Main advantage of the algorithm reversible jump MCMC algorithm is produce the joint estimators for the parameter and hyper parameter in hierarchical Bayesian. The performance of the this methodology is illustrated via several simulation results.
Keywords : Hierarchical Bayesian model, Reversible Jump MCMC methods, Signal Segmentation, piecewise constant Moving-Average (MA) processes
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).