Main Article Content

Abstract

This study aims to determine the drought risk of Kulon Progo Regency using fuzzy logic and study the characteristics. The input variables used in this study are the drought level, exposed population, and vulnerable population. The Mamdani method used in the fuzzy inference to obtain the output variable, that is, the Drought Risk Index (DRI). Then, the DRI are mapped to generate the drought risk map. The result shows that the fuzzy logic can be used to determine the drought risk. The drought risk level of the subdistricts in Kulon Progo Regency was fluctuated from 2010 to 2019. The drought risk level in 2010-2015 and 2019 were dominated by the low category. Meanwhile, the drought risk level in 2016-2018 was dominated by the very low category. Furthermore, the result also shows that the subdistricts located in the southern region of Kulon Progo Regency had a higher risk than those in the middle and northern regions during the last 10 years

Keywords

Fuzzy logic Drought Kulon Progo

Article Details

How to Cite
Jayadri, B. L., & Abadi, A. M. (2021). Fuzzy Logic Application for Drought Risk Determination in Kulon Progo Regency, Daerah Istimewa Yogyakarta Province, Indonesia. EKSAKTA: Journal of Sciences and Data Analysis, 2(1), 62–75. https://doi.org/10.20885/EKSAKTA.vol2.iss1.art9

References

  1. L. X. Wang, A Course in Fuzzy System and Control, New Jersey, Pretience Hall International, 1997.
  2. H. Singh, M. M. Gupta, T. Meitzler, Z. G. Hou, K. K. Garg, A. M. G. Solo, and L. A. Zadeh, Real-Life Applications of Fuzzy Logic, Advances in Fuzzy System, London, Hindawi Publishing Corporation, 2013.
  3. M. Özger, A. K. Mishra, and V. P. Singh, Long Lead Time Drought Forecasting Using a Wavelet and Fuzzy Logic Combination Model: A Case Study in Texas, Journal of Hydrometeorology 13(2012) 284-297.
  4. S. M. Lewis, G. Fitts, M. Kelly, and L. Dale, A fuzzy logic-based spatial suitability model for drought-tolerant switchgrass in the United States, Computer and Electronics in Agriculture 103(2014) 39-47.
  5. A. Malik, A. Kumar, S. Q. Salih, S. Kim, N. W. Kim, Z. M. Yaseen, and V. P. Singh, Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India, San Francisco, PLOS ONE, 2020.
  6. D. A. Wilhite, Drought and Wates Crises: Science, Technology, and Management Issues, Broken Sound Parkway NW, Taylor & Francis Group Press, 2005.
  7. Badan Nasional Penanggulangan Bencana (BNPB), Risiko Bencana Indonesia, Jakarta, BNPB, 2016.
  8. G. A. Dipayana, A. Cahyadi, and E. Nurjani, Analisis Trend Kejadian Kekeringan di Sebagian Wilayah di Propinsi D. I. Yogyakarta dan Dampak El-Nino Terhadapnya, Seminar Nasional Geografi, Surakarta, Universitas Muhammadiyah Surakarta, 2014.
  9. Z. Sun, J. Zhang, Q. Zhang, Y. Hu, D. Yan, and C. Wang, Integrated risk zoning of drought and waterlogging disasters based on fuzzy comprehensive evaluation in Anhui Province, China, Natural Hazards, vol. 71, pp. 1639-1657, 2004.
  10. F. I. Nurrahman and A. Pamungkas, Identifikasi Sebaran Daerah Rawan Bahaya Kekeringan Meteorologi di Kabupaten Lamongan, Jurnal Teknik POMITS, vol. 2, pp. 83-86, 2013.
  11. T. B. McKee, N. J. Doesken, and J. Kleist, The Relationship of Drought Frequency and Duration to Time Scales, Proceeding of 8th Conference on Applied Climatology, Boston MA, American Meteorological Society, vol. 17, pp. 179-183, 1993.
  12. World Meteorological Organization (WMO), Standardized Precipitation Index User Guide, Geneva, World Meteorological Organization, 2012.
  13. Badan Pusat Statistik (BPS) Kabupaten Kulon Progo, Curah Hujan per Bulan Menurut Kecamatan di Kabupaten Kulon Progo, Kulon Progo, BPS Kabupaten Kulon Progo, 1993-2019.
  14. Badan Pusat Statistik (BPS) Kabupaten Kulon Progo, Proyeksi Penduduk Kabupaten Kulon Progo Tahun 2010-2020, Kulon Progo, BPS Kabupaten Kulon Progo, pp. 9-369, 2014.
  15. Dinas Sosial Pemberdayaan Perempuan dan Perlindungan Anak Kabupaten Kulon Progo, Persebaran Jenis PMKS Menurut Kecamatan di Kabupaten Kulon Progo, Kulon Progo, Dinsos P3A Kabupaten Kulon Progo, 2010-2019.
  16. F. Prawaka, A. Zakaria, and S. Tugiono, Analisis Data Curah Hujan yang Hilang dengan Menggunakan Metode Normal Ratio, Inversed Square Distance, dan Rata-Rata Aljabar (Studi Kasus Curah Hujan Beberapa Stasiun Hujan Daerah Bandar Lampung), Jurnal Rekayasa Sipil dan Desain, vol. 4, pp. 397-406, 2016.
  17. Badan Nasional Penanggulangan Bencana (BNPB), Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 02 Tahun 2012 tentang Pedoman Umum Pengkajian Risiko Bencana, Jakarta, BNPB, 2012.
  18. I. M. Sandy, Republik Indonesia Geografi Regional, Depok, Departemen Geografi FMIPA Universitas Indonesia, 1996.
  19. Badan Pusat Statistik (BPS) Kabupaten Kulon Progo, Kabupaten Kulon Progo Dalam Angka 2020, Kulon Progo, BPS Kabupaten Kulon Progo, 2019.
  20. G. J. Klir, U. S. Clair, and B. Yuan, Fuzzy Set Theory: Foundations and Applications, New Jersey, Pretience Hall International, pp. 222-229, 1997.