Main Article Content

Abstract

The spatial characteristics of rainfall in Nusa Tenggara Timu  for the periods 1961-1990 and 1991-2020 show similarities in terms of topography influencing local variations in rainfall intensity. Additionally, inland areas and the northern side of region experience higher rainfall compared to the coastal areas and the southern side. On the other hand, temporal characteristics reveal a monsoonal rainfall pattern with peak precipitation occurring in January and the lowest rainfall in August. Furthermore, there is a normal shift in rainfall patterns between the two periods, marked by a reduction in the intensity of dark colors in the 1991-2020 period compared to 1961-1990. There is also a positive shift in normal rainfall values for the months of April and December, while the remaining months experience a negative shift.

Keywords

Rainfall Characteristics, Normal Rainfall Shift, Spatial, Temporal

Article Details

How to Cite
Afghani, F. A. ., Ofana Tri Wibowo, Imawan Mashuri, & Zuhairul A, H. A. (2024). Analysis of Monthly Rainfall Characteristics in Nusa Tenggara Timur and its Spatial and Temporal Shifts. EKSAKTA: Journal of Sciences and Data Analysis, 5(1), 76–83. https://doi.org/10.20885/EKSAKTA.vol5.iss1.art9

References

  1. Intergovernmental Panel on Climate Change (IPCC), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2014.
  2. O. L. P. Orozco, Y. C. Escobar, and M. Q. Angel, ‘Study of Monthly Rainfall Trends In The Upper And Middle Cauca River Basin, Colombia’, Dyna, vol. 78, no. 169, pp. 112–120, 2011.
  3. D. Singh, M. Tsiang, B. Rajaratnam, and N. S. Diffenbaugh, ‘Precipitation Extremes over The Continental United States in A Transient, High-Resolution, Ensemble Climate Model Experiment’, J. Geophys. Res. Atmos., vol. 118, pp. 7063–7086, 2013, doi: doi:10.1002/jgrd.50543.
  4. R. Zubieta and M. Saavedra, ‘Distribución espacial del índice de concentración de precipitación diaria en los andes centrales peruanos: valle del río Mantaro’, Tecnia, vol. 19, no. 2, pp. 13–22, 2009, doi: https://doi.org/10.21754/tecnia.v19i2.113.
  5. E. Syahbuddin, H., Manabu, D., Yamanaka, & Runtunuwu, ‘Impact Of Climate Change To Dry Land Water Budget In Indonesia: Observation During 1980-2002 And Simulation For 2010-2039’, Kobe: Kobe University Press, 2004.
  6. F. Alfahmi, R. Boer, R. Hidayat, Perdinan, and A. Sopaheluwakan, ‘The Impact of Concave Coastline on Rainfall Offshore Distribution over Indonesian Maritime Continent’, Sci. World J., 2019, doi: https://doi.org/10.1155/2019/6839012.
  7. P. R. Kota, Bertahan Di Tengah Anomali Iklim ‘Upaya Pemenuhan Pangan pada Petani Lahan Kering dan Nelayan Artisanal Di Kupang Menghadapi Perubahan Iklim’. Kupang, Nusa Tenggara Timur: Perkumpulan Pikul, 2010.
  8. Badan Pemeriksa Keuangan Republik Indonesia, ‘PERWAKILAN PROVINSI NUSA TENGGARA TIMUR’, 2023. https://ntt.bpk.go.id/ (accessed Nov. 17, 2023).
  9. S. Hermaniar, J. Mahatmaji, I. Tjandraningsih, and N. Widyaningrum, ‘Penghidupan Masyarakat Pedesaan NTT Dan NTB: Krisis Dan Perubahan’, Bandung, 2009.
  10. K. Tampubolon and F. N. Sihombing, ‘Pengaruh Curah Hujan Dan Hari Hujan Terhadap Produksi Pertanian Serta Hubungannya Dengan PDRB Atas Harga Berlaku Di Kota Medan’, J. Pembang. Perkota., vol. 5, no. 1, pp. 35–41, 2017.
  11. Badan Penanggulangan Bencana Daerah Provinsi Nusa Tenggara Timur, ‘Kejadian Bencana Provinsi Nusa Tenggara Timur’, 2023. https://bpbd.nttprov.go.id/bencana (accessed Nov. 17, 2023).
  12. Badan Nasional Penanggulangan Bencana (BNPB), ‘GEOPORTAL DATA BENCANA INDONESIA’, 2023. https://gis.bnpb.go.id/ (accessed Nov. 17, 2023).
  13. H. Hersbach et al., ‘The ERA5 global reanalysis’, Q. J. R. Meteorol. Soc., vol. 146, no. 730, pp. 1999–2049, 2020, doi: https://doi.org/10.1002/qj.3803.
  14. X. Meng, J. Guo, and Y. Han, ‘Preliminarily Assessment of ERA5 Reanalysis Data’, J. Mar. Meteorol., vol. 38, pp. 91–99, 2018, doi: 10.19513/j.cnki.issn2096-3599.2018.01.01110.19513/j.cnki.issn2096-3599.2018.01.011.
  15. Q. He, K. Zhang, S. Wu, Z. Shen, M. Wan, and L. Li, ‘Precipitable Water Vapor Converted From GNSS-ZTD and ERA5 Datasets for the Monitoring of Tropical Cyclones’, IEEE Access, vol. 8, pp. 87275–87290, 2020, doi: http://dx.doi.org/10.1109/ACCESS.2020.2991094.
  16. G. Arvind, P. Ashok, S. Girish Karthi, and C. R. Suribabu, ‘Statistical Analysis of 30 Years Rainfall Data: A Case Study’, in IOP Conference Series: Earth and Environmental Science, IOP Science, 2017, pp. 1–9. doi: 10.1088/1755-1315/80/1/012067.
  17. N. Tallamma, N. Ihsan, and A. J. Patandean, ‘Analisis Pengaruh Madden Julian Oscillation (MJO) Terhadap Curah Hujan Di Kota Makassar’, J. Sains dan Pendidik. Fis., vol. 12, no. 3, pp. 324–329, 2016.
  18. S. Alfiandy, R. C. H. Hutauruk, and D. S. Permana, ‘Peran dinamika laut dan topografi terhadap pola hujan tipe lokal di wilayah Kota Palu’, J. Ilmu-Ilmu Perairan, Pesisir dan Perikan., vol. 9, no. 2, pp. 173–183, 2020, doi: https://doi.org/10.13170/depik.9.2.16106.
  19. R. Salmayenti, R. Hidayat, and A. Pramudia, ‘Prediksi Curah Hujan Bulanan Menggunakan Teknik Jaringan Syaraf Tiruan’, Agromet, vol. 31, no. 1, pp. 11–21, 2017, doi: 10.29244/j.agromet.32.1.11-21.
  20. Supriyati, B. Tjahjono, and S. Effendy, ‘Analisis Pola Hujan Untuk Mitigasi Aliran Lahar Hujan Gunungapi Sinabung’, J. Il. Tan. Lingk, vol. 20, no. 2, pp. 95–100, 2018, doi: https://doi.org/10.29244/jitl.20.2.95-100.

Most read articles by the same author(s)