Main Article Content

Abstract

Pemanfaatan batu kapur dari Pamekasan, Madura sebagai katalis heterogen pada reaksi pembuatan biodiesel dipelajari pada penelitian ini.  Batu kapur dikalsinasi pada suhu 900 ºC selama 3 jam untuk membentuk katalis CaO. Katalis CaO yang terbentuk dikarakterisasi menggunakan difraksi sinar-X (XRD), spektroskopi inframerah (FTIR) dan Scanning Electron Microscopy-Energy Dispersive X-Ray Analysis (SEM-EDX). Proses transesterifikasi dari minyak nyamplung dilakukan dengan rasio mol minyak terhadap methanol sebesar 1:16 pada temperatur 60 °C selama 1 jam dengan katalis CaO sebesar 4 % (w/w). Hasil analisis GC-MS diperoleh yield biodiesel sebesar 54% dengan konversi sebesar 49%.

Article Details

How to Cite
Febriana, I. D., Hamid, A., Jakfar, A., Abdullah, M., Rohmah, F., Purbaningtias, T. E., Rahmawati, Z., & Wijaya, S. D. (2022). Pemanfaatan Batu Kapur Madura sebagai Katalis dalam Pembuatan Bioedesel dari Minyak Nyamplung. Indonesian Journal of Chemical Analysis (IJCA), 5(1), 09–17. https://doi.org/10.20885/ijca.vol5.iss1.art2

References

  1. Suprapto, T. R. Fauziah, M. S. Sangi, T. P. Oetami, I. Qoniah, and D. Prasetyoko, “Calcium oxide from limestone as solid base catalyst in transesterification of Reutealis trisperma oil,” Indones. J. Chem., vol. 16, no. 2, pp. 208–213, 2016, doi: 10.22146/IJC.21165.
  2. E. O. Ajala, M. A. Ajala, A. O. Ajao, H. B. Saka, and A. C. Oladipo, “Calcium-carbide Residue: A Precursor for the Synthesis of CaO-Al2O3-SiO2-CaSO4 Solid Acid Catalyst for Biodiesel Production using Waste Lard,” Chem. Eng. J. Adv., p. 100033, 2020, doi: 10.1016/j.ceja.2020.100033.
  3. A. M. Rabie, M. Shaban, M. R. Abukhadra, R. Hosny, S. A. Ahmed, and N. A. Negm, “Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil,” J. Mol. Liq., vol. 279, pp. 224–231, 2019, doi: 10.1016/j.molliq.2019.01.096.
  4. Hartati et al., “Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel,” J. Energy Inst., 2020, doi: 10.1016/j.joei.2020.06.006.
  5. I. Lawan, Z. N. Garba, W. Zhou, M. Zhang, and Z. Yuan, “Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production,” Renew. Energy, vol. 145, pp. 2550–2560, 2020, doi: 10.1016/j.renene.2019.08.008.
  6. P. R. Pandit and M. H. Fulekar, “Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material,” Renew. Energy, vol. 136, pp. 837–845, 2019, doi: 10.1016/j.renene.2019.01.047.
  7. K. N. Krishnamurthy, S. N. Sridhara, and C. S. Ananda Kumar, “Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst,” Renew. Energy, vol. 146, pp. 280–296, 2020, doi: 10.1016/j.renene.2019.06.161.
  8. A. A. Ayodeji, M. E. Ojewumi, B. Rasheed, and J. M. Ayodele, “Data on CaO and eggshell catalysts used for biodiesel production,” Data Br., vol. 19, pp. 1466–1473, 2018, doi: 10.1016/j.dib.2018.06.028.
  9. K. Sudsakorn, S. Saiwuttikul, S. Palitsakun, A. Seubsai, and J. Limtrakul, “Biodiesel production from Jatropha Curcas oil using strontium-doped CaO/MgO catalyst,” J. Environ. Chem. Eng., vol. 5, no. 3, pp. 2845–2852, 2017, doi: 10.1016/j.jece.2017.05.033.
  10. T. Maneerung, S. Kawi, and C. H. Wang, “Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil,” Energy Convers. Manag., vol. 92, pp. 234–243, 2015, doi: 10.1016/j.enconman.2014.12.057.
  11. A. Hamid, D. Prasetyoko, T. Esti, F. Rohmah, and I. Dayi, “Pengaruh Tahap Kristalisasi pada Sintesis ZSM-5 Mesopori dari Kaolin Alam,” vol. 03, no. 02, pp. 40–49, 2020.
  12. Rakhmad, N. Hindryawati, and Daniel, “Pembuatan Katalis Basa Heterogen Dari Batu Gamping ( Limestone ),” Pros. Semin. Nas., pp. 101–105, 2017.
  13. N. Widiarti et al., “Upgrading catalytic activity of NiO/CaO/MgO from natural limestone as catalysts for transesterification of coconut oil to biodiesel,” Biomass Convers. Bioref
  14. inery, 2021, doi: 10.1007/s13399-021-01373-5.
  15. M. L. Granados et al., “Biodiesel from sunflower oil by using activated calcium oxide,” Appl. Catal. B Environ., vol. 73, no. 3, pp. 317–326, 2007, doi: 10.1016/j.apcatb.2006.12.017.
  16. T. Maneerung, S. Kawi, Y. Dai, and C. H. Wang, “Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure,” Energy Convers. Manag., vol. 123, pp. 487–497, 2016, doi: 10.1016/j.enconman.2016.06.071.
  17. M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, and J. Hidaka, “Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production,” Fuel, vol. 87, no. 12, pp. 2798–2806, 2008, doi: 10.1016/j.fuel.2007.10.019.
  18. N. U. Soriano, R. Venditti, and D. S. Argyropoulos, “Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification,” Fuel, vol. 88, no. 3, pp. 560–565, 2009, doi: 10.1016/j.fuel.2008.10.013.
  19. D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Appl. Energy, vol. 87, no. 4, pp. 1083–1095, 2010, doi: 10.1016/j.apenergy.2009.10.006.
  20. X. Liu, H. He, Y. Wang, S. Zhu, and X. Piao, “Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst,” Fuel, vol. 87, no. 2, pp. 216–221, 2008, doi: 10.1016/j.fuel.2007.04.013.