Main Article Content
Abstract
Article Details
Copyright (c) 2022 Indonesian Journal of Chemical Analysis (IJCA)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits
References
- T. E. Aniyikaiye, T. Oluseyi, J. O. Odiyo, and J. N. Edokpayi, ‘Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria’, Int. J. Environ. Res. Public Health, vol. 16, no. 7, 2019, doi: 10.3390/ijerph16071235.
- M. Tamyiz, ‘Perbandingan Rasio Bod / Cod Pada Area Tambak Di Hulu Dan Hilir Terhadap Biodegradabilitas Bahan Organik’, J. Res. Technol., vol. 1, no. 1, pp. 9–15, 2015.
- ‘SNI 6989.2-2019.pdf’, SNI.6989.2:2019.
- J. Ma, ‘Determination of chemical oxygen demand in aqueous samples with non-electrochemical methods’, Trends Environ. Anal. Chem., vol. 14, no. April, pp. 37–43, 2017, doi: 10.1016/j.teac.2017.05.002.
- N. Yao, J. Wang, and Y. Zhou, ‘Rapid determination of the chemical oxygen demand of water using a thermal biosensor’, Sensors (Switzerland), vol. 14, no. 6, pp. 9949–9960, 2014, doi: 10.3390/s140609949.
- J. Zhang et al., ‘Wastewater COD characterization: RBCOD and SBCOD characterization analysis methods’, Sci. Rep., vol. 11, no. 1, 2021, doi: 10.1038/s41598-020-80700-8.
- A. Gnanavelu, T. S. Shanmuganathan, V. Deepesh, and S. Suresh, ‘Validation of a Modified Procedure for the determination of Chemical Oxygen Demand using standard dichromate method in industrial wastewater samples with high calcium chloride content’, Indian J. Sci. Technol., vol. 14, no. 29, pp. 2391–2399, 2021, doi: 10.17485/ijst/v14i29.1412.
- S. Zhang, W. Chen, Y. Liu, P. Luo, and H. Gu, ‘A Modified Method for the Accurate Determination of Chemical Oxygen Demand (COD) in High Chloride Oilfield Wastewater’, Open J. Yangtze Oil Gas, vol. 03, no. 04, pp. 263–277, 2018, doi: 10.4236/ojogas.2018.34023.
- Y. Rohyami, T. Aprianto, and Marjono, ‘Validation Method on Determination of Chemical Oxygen Demand Using Indirect UV-Vis Spectrometry’, Adv. Mater. Res., vol. 1162, pp. 101–108, 2021, doi: 10.4028/www.scientific.net/amr.1162.101.
- J. Li, Y. Tong, L. Guan, S. Wu, and D. Li, ‘A turbidity compensation method for COD measurements by UV–vis spectroscopy’, Optik (Stuttg)., vol. 186, no. April, pp. 129–136, 2019, doi: 10.1016/j.ijleo.2019.04.096.
- S. Dimitrova et al., ‘Comparison of spectrophotometric methods using cuvette tests and national standard methods for analysis of wastewater samples’, Int. J. Water Resour. Environ. Eng., vol. 5, no. 8, pp. 482–488, 2013, doi: 10.5897/SRE2013.
- C. Wang, W. Li, and M. Huang, ‘High precision wide range online chemical oxygen demand measurement method based on ultraviolet absorption spectroscopy and full-spectrum data analysis’, Sensors Actuators, B Chem., vol. 300, no. August, p. 126943, 2019, doi: 10.1016/j.snb.2019.126943.
- N. Kishimoto and M. Okumura, ‘Feasibility of mercury-free chemical oxygen demand (COD) test with excessive addition of silver sulfate’, J. Water Environ. Technol., vol. 16, no. 6, pp. 221–232, 2018, doi: 10.2965/jwet.18-016.
- U. Hasanah, A. Heri Mulyati, D. Widiastuti, S. Warnasih, Y. Syahputri, and T. Panji, ‘Development of Cod (Chemical Oxygen Demand) Analysis Method in Waste Water Using Uv-Vis Spectrophotometer’, J. Sci. Innovare, vol. 03, no. 02, pp. 35–38, 2020.
- G. Le, H. Yang, and X. Yu, ‘Improved UV/O3 method for measuring the chemical oxygen demand’, Water Sci. Technol., vol. 77, no. 5, pp. 1271–1279, 2018, doi: 10.2166/wst.2018.005.
- Y. Ge et al., ‘Electrochemical determination of chemical oxygen demand using Ti/TiO2 electrode’, Int. J. Electrochem. Sci., vol. 11, no. 12, pp. 9812–9821, 2016, doi: 10.20964/2016.12.05.
References
T. E. Aniyikaiye, T. Oluseyi, J. O. Odiyo, and J. N. Edokpayi, ‘Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria’, Int. J. Environ. Res. Public Health, vol. 16, no. 7, 2019, doi: 10.3390/ijerph16071235.
M. Tamyiz, ‘Perbandingan Rasio Bod / Cod Pada Area Tambak Di Hulu Dan Hilir Terhadap Biodegradabilitas Bahan Organik’, J. Res. Technol., vol. 1, no. 1, pp. 9–15, 2015.
‘SNI 6989.2-2019.pdf’, SNI.6989.2:2019.
J. Ma, ‘Determination of chemical oxygen demand in aqueous samples with non-electrochemical methods’, Trends Environ. Anal. Chem., vol. 14, no. April, pp. 37–43, 2017, doi: 10.1016/j.teac.2017.05.002.
N. Yao, J. Wang, and Y. Zhou, ‘Rapid determination of the chemical oxygen demand of water using a thermal biosensor’, Sensors (Switzerland), vol. 14, no. 6, pp. 9949–9960, 2014, doi: 10.3390/s140609949.
J. Zhang et al., ‘Wastewater COD characterization: RBCOD and SBCOD characterization analysis methods’, Sci. Rep., vol. 11, no. 1, 2021, doi: 10.1038/s41598-020-80700-8.
A. Gnanavelu, T. S. Shanmuganathan, V. Deepesh, and S. Suresh, ‘Validation of a Modified Procedure for the determination of Chemical Oxygen Demand using standard dichromate method in industrial wastewater samples with high calcium chloride content’, Indian J. Sci. Technol., vol. 14, no. 29, pp. 2391–2399, 2021, doi: 10.17485/ijst/v14i29.1412.
S. Zhang, W. Chen, Y. Liu, P. Luo, and H. Gu, ‘A Modified Method for the Accurate Determination of Chemical Oxygen Demand (COD) in High Chloride Oilfield Wastewater’, Open J. Yangtze Oil Gas, vol. 03, no. 04, pp. 263–277, 2018, doi: 10.4236/ojogas.2018.34023.
Y. Rohyami, T. Aprianto, and Marjono, ‘Validation Method on Determination of Chemical Oxygen Demand Using Indirect UV-Vis Spectrometry’, Adv. Mater. Res., vol. 1162, pp. 101–108, 2021, doi: 10.4028/www.scientific.net/amr.1162.101.
J. Li, Y. Tong, L. Guan, S. Wu, and D. Li, ‘A turbidity compensation method for COD measurements by UV–vis spectroscopy’, Optik (Stuttg)., vol. 186, no. April, pp. 129–136, 2019, doi: 10.1016/j.ijleo.2019.04.096.
S. Dimitrova et al., ‘Comparison of spectrophotometric methods using cuvette tests and national standard methods for analysis of wastewater samples’, Int. J. Water Resour. Environ. Eng., vol. 5, no. 8, pp. 482–488, 2013, doi: 10.5897/SRE2013.
C. Wang, W. Li, and M. Huang, ‘High precision wide range online chemical oxygen demand measurement method based on ultraviolet absorption spectroscopy and full-spectrum data analysis’, Sensors Actuators, B Chem., vol. 300, no. August, p. 126943, 2019, doi: 10.1016/j.snb.2019.126943.
N. Kishimoto and M. Okumura, ‘Feasibility of mercury-free chemical oxygen demand (COD) test with excessive addition of silver sulfate’, J. Water Environ. Technol., vol. 16, no. 6, pp. 221–232, 2018, doi: 10.2965/jwet.18-016.
U. Hasanah, A. Heri Mulyati, D. Widiastuti, S. Warnasih, Y. Syahputri, and T. Panji, ‘Development of Cod (Chemical Oxygen Demand) Analysis Method in Waste Water Using Uv-Vis Spectrophotometer’, J. Sci. Innovare, vol. 03, no. 02, pp. 35–38, 2020.
G. Le, H. Yang, and X. Yu, ‘Improved UV/O3 method for measuring the chemical oxygen demand’, Water Sci. Technol., vol. 77, no. 5, pp. 1271–1279, 2018, doi: 10.2166/wst.2018.005.
Y. Ge et al., ‘Electrochemical determination of chemical oxygen demand using Ti/TiO2 electrode’, Int. J. Electrochem. Sci., vol. 11, no. 12, pp. 9812–9821, 2016, doi: 10.20964/2016.12.05.