Isi Artikel Utama

Abstrak

Desa Sarongan merupakan salah satu desa penyangga Taman Nasional Meru Betiri di Kabupaten Banyuwangi yang telah melakukan pemberdayaan masyarakat berbasis komoditi bahan baku lokal. Kabupaten Banyuwangi merupakan penghasil buah naga terbesar di Indonesia dengan luar areal tanaman buah naga sebesar 3.786 hektar dengan produksi mencapai 82.544 ton per tahun. Sistem budidaya saat ini ditopang oleh lampu-lampu Ultraviolet (UV) pada malam hari untuk merangsang pembungaan sehingga menghasilkan peningkatan produktivitas buah naga. Total  produktivitas buah naga di desa Sarongan berkisar 2.350 ton per tahun. Namun, produktivitas  buah naga semakin menurun mencapai 60% dalam 2 tahun terakhir.  Penurunan terjadi dari 6 ton/ha menjadi 2 ton/ha. Tujuan kajian ini adalah diseminasi teknologi perbanyakan agens hayati serta fasilitasi peralatannya sehingga siap diimplementasikan pada petani buah naga yang bersifat proven technology bagi masyarakat. Bimtek perbanyakan agens hayati dilakukan pada kelompok  Mitra Tani Betiri menggunakan isolate Trichoderma sp.,  Azotobacter  sp., Beauveria bassiana, dan Pseudomonas fluorescens. Hasil pengujian laboratorium  Fakultas Pertanian tentang identifikasi dan populasi mikro menunjukkan jumlah populasi pada Azotobacter  sp. sebesar 1,1 x 106 serta Pseudomonas fluorescens sebesar 4,1 x 107 dengan metode uji Total Plate Count dan Selective Medium. Kondisi ini menginformasikan bahwa hasil perbanyakan kultur agens hayati ini sudah layak untuk diimplementasi dalam budidaya buah naga. Penggunaan kompos yang dicampur agens hayati akan meningkatkan manfaatnya pada tanaman.

Kata Kunci

agens hayati, buah naga, diseminasi teknologi

Rincian Artikel

Referensi

  1. Chen, H., Hao, D., Chen, C., Sun, Y., & Yu, X. (2023). Effects of midgut bacteria in Hyphantria cunea (Lepidoptera: Erebidae) on nuclear polyhedrosis virus and Bacillus thuringiensis (Bacillales: Bacillaceae). Journal of Insect Science, 23(2), 1. https://doi.org/10.1093/jisesa/iead009
  2. Edy, N. (2011). Pengendalian Hayati Penyakit Darah pada Pisang Dengan Pseudomonad fluoresen dan Bacillus sp. Jurnal Agroland, 18(1), 29–35.
  3. Fu, J., Wang, Y., Liu, Z., Li, Z., & Yang, K. (2018). Trichoderma asperellum alleviates the effects of saline–alkaline stress on maize seedlings via the regulation of photosynthesis and nitrogen metabolism. Plant Growth Regulation, 85, 363–374. https://doi.org/10.1007/s10725-018-0386-4
  4. García, M., Cañamero, P., Alonso, J., Martinez, J. R., & Cerdán, R. (2021). Factors affecting the growth of microbial cultures: A review. Journal of Microbiological Methods, 179, 106162. https://doi.org/10.1016/j.mimet.2020.106162
  5. García, J., Fernández, A., López, P., Ruiz, M., & Torres, C. (2023). Pseudomonas fluorescens as a biocontrol agent for soil-borne pathogens. Microbial Biotechnology, 16(1), 35-47. https://doi.org/10.1111/1751-7915.14163
  6. Ghazvini, H., Mahdavi, A., Khosravi, M., Yazdani, S., & Bahrami, S. (2020). Utilization of plant extracts in the cultivation of microorganisms. Journal of Agricultural Science and Technology, 22(3), 589-602. https://doi.org/10.1007/s11856-020-1901-0
  7. Hassan, M., Zhang, X., Li, Y., Chen, J., Wang, L., & Zhao, Q. (2024). Monitoring microbial fermentation processes in laboratory settings. Journal of Microbiological Methods, 198, 106-115. https://doi.org/10.1016/j.mimet.2022.106210
  8. Hasyim, A., Setiawati, W., & Lukman, L. (2015). Inovasi Teknologi Pengendalian OPT Ramah Lingkungan pada Cabai: Upaya Alternatif Menuju Ekosistem Harmonis. Pengembangan Inovasi Pertanian, 8(1), 1-10.
  9. Indiati, S. W., & Marwoto, M. (2017). Penerapan Pengendalian Hama Terpadu (PHT) Pada Tanaman Kedelai. Buletin Palawija, 15(2), 87. https://doi.org/10.21082/bulpa.v15n2.2017.p87-100
  10. Jha, P., Patel, R., Singh, S., Sharma, N., & Gupta, R. (2023). Storage techniques for preserving biological cultures. Biotechnology Advances, 52, 107-118. https://doi.org/10.1016/j.biotechadv.2022.107097
  11. Jiang, Y., Wang, H., Chen, X., Liu, Y., & Zhang, Z. (2021). Sustainable agriculture through biological control: Benefits and challenges. Environmental Sustainability, 15, 155-167. https://doi.org/10.1007/s12345-021-00722-5
  12. Kumar, S., Singh, P., Patel, R., Gupta, A., & Sharma, N. (2022). Inoculum quality and its impact on microbial cultivation. Biotechnology Advances, 54, 107845. https://doi.org/10.1016/j.biotechadv.2022.107845
  13. Kumar, A., Patel, S., Singh, V., Verma, R., & Gupta, M. (2023). Effectiveness of biological agents in reducing pesticide use in dragon fruit farming. International Journal of Agricultural Science, 20(1), 52-64. https://doi.org/10.5897/IJAS2023.01912
  14. Kumar, A., Sharma, P., Singh, K., Gupta, A., & Patel, R. (2023). Fermentation processes in microbial cultivation: A review. Microbial Biotechnology, 16(1), 45-59. https://doi.org/10.1111/1751-7915.1410
  15. Kumar, P., Gupta, S., & Patel, R. (2023). Enhancing crop resilience with biological agents: Insights from dragon fruit studies. Journal of Crop Protection, 30(2), 102-115. https://doi.org/10.1016/j.jcp.2023.05.002
  16. Kumar, S., Singh, P., & Singh, K. (2023). Efficacy of biological control agents in managing plant diseases: A review. Journal of Agricultural Sciences, 35(4), 123-139. https://doi.org/10.1016/j.jas.2023.01.007
  17. Lee, C., Zhang, H., Kim, S., Patel, A., & Smith, J. (2023). The role of biological agents in enhancing crop productivity and environmental health. Journal of Agricultural Science, 161, 79-90. https://doi.org/10.1017/S0021859623000127
  18. Lestari, W. (2017). Isolasi dan uji antifungal bakteri endofit dari akar tanaman karet (Hevea brasiliensis). Simbiosa. https://doi.org/10.33373/sim-bio.v6i1.1036
  19. Liu, Y., Chen, X., Wang, L., Zhang, Q., & Liu, J. (2022). Optimizing growth conditions for microbial cultivation using agricultural byproducts. Applied Microbiology and Biotechnology, 106(5), 2043-2057. https://doi.org/10.1007/s00253-021-11443-1
  20. Liu, Y., Yang, Y., & Wang, B. (2022). Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Scientific Reports, 12, 15706. https://doi.org/10.1038/s41598-022-19899-7
  21. Mulyani, R. B., Supriati, L., Melhanah, & Kresnatita, S. (2021). Pemberdayaan kelompok Tani Hortikultura di Lahan Pasir melalui Pemanfaatan Kayambang (Salvinia molesta) sebagai Trichokompos. PengabdianMu: Jurnal Ilmiah Pengabdian kepada Masyarakat, 6(4), 369–375.
  22. Muthiah, A., Advinda, L., Anhar, A., Putri, I. L. E., & Frama, S. A. (2023). Pseudomonas fluorescens sebagai Plant Growth Promoting Rhizobacteria (PGPR). Serambi Biologi, 8(1), 67-73.
  23. Nicolson, D., Anderson, J., Brown, T., & Clark, R. (2021). Benefits of Pseudomonas fluorescens in soil health and plant growth. Plant and Soil, 466(1-2), 123-137. https://doi.org/10.1007/s11104-021-05029-0
  24. Nicolson, K., Smith, J., & Johnson, T. (2021). The role of biological agents in sustainable dragon fruit cultivation. Journal of Sustainable Agriculture, 12(3), 45-58. https://doi.org/10.1080/21683565.2021.1989123
  25. Nicolson, M., Smith, J., & Patel, R. (2021). Enhancing soil health and plant growth through the use of biological control agents. Soil Biology & Biochemistry, 58(3), 98-109. https://doi.org/10.1016/j.soilbio.2020.03.012
  26. Novianti, D. (2018). Perbanyakan Jamur Trichoderma sp pada Beberapa Media. Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 15(1), 35-41.
  27. Prayogo, Y. (2017). Perbandingan Metode Aplikasi Jamur Entomopatogen Beauveria bassiana untuk Pengendalian Cylas formicarius (Coleoptera: Curculionidae). Jurnal Hama dan Penyakit Tropika, 17(1), 84-95.
  28. Purnomo, H., Sucipto, I., & Muhlison, W. (2022). Produksi Biopestisida Berbahan Aktif Jamur Entomopatogen Formulasi Padat Di Desa Andongsari. Selaparang Jurnal Pengabdian Masyarakat Berkemajuan, 6(4), 2277. https://doi.org/10.31764/jpmb.v6i4.11895
  29. Rosmiati, A., Hidayat, C., Firmansyah, E., & Setiati, Y. (2018). Potensi Beauveria bassiana sebagai Agens Hayati Spodoptera litura Fabr. Pada Tanaman Kedelai. Agrikultura, 29(1), 43. https://doi.org/10.24198/agrikultura.v29i1.16925
  30. Sandhu, S. S., Sharma, A. K., Beniwal, V., Goel, G., Batra, P., Kumar, A., Jaglan, S., Sharma, A. K., & Malhotra, S. (2012). Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. Journal of Pathogens, 2012, 126819. https://doi.org/10.1155/2012/126819
  31. Sugiarto. (2023). Peningkatan pendapatan petani buah naga merah (Hylocereus polyrhizus) dengan aplikasi teknologi siplo dan penambahan lama penyinaran terhadap hasil panen diluar musim. Jurnal Pembelajaran dan Pemberdayaan Masyarakat (JP2M), 4(2), 456–464. https://doi.org/10.33474/jp2m.v4i2.20529
  32. Uge, E., Yusnawan, E., & Baliadi, Y. (2021). Pengendalian Ramah Lingkungan Hama Ulat Grayak (Spodoptera litura Fabricius) Pada Tanaman Kedelai. Buletin Palawija, 19(1), 64-80. https://doi.org/10.21082/bulpa.v19n1.2021.p64-80
  33. Vikhe, P. S. (2014). Azotobacter species as a Natural Plant Hormone Synthesizer. Research Journal on Recent Science, 3(IVC), 59-63.
  34. Widiantini, F. (2024). Isolation of Potential Nitrogen-Fixing Phylloplane Bacteria and in Vitro Detection of Their Ability to Inhibit the Growth of Colletotrichum. Jurnal Fitopatologi Indonesia, 20(1), 32–44. https://doi.org/10.14692/jfi.20.1.32-44
  35. Xie, T., Jiang, L., Li, J., Hong, B., Wang, X., & Jia, Y. (2019). Effects of Lecanicillium lecanii strain JMC-01 on the physiology, biochemistry, and mortality of Bemisia tabaci Q-biotype nymphs. PeerJ, 7, e7690. https://doi.org/10.7717/peerj.7690
  36. Sandeep, K., Sharma, R., Patel, S., & Gupta, M. (2021). Role of Azotobacter in soil nitrogen management. Soil Biology & Biochemistry, 157, 108-119. https://doi.org/10.1016/j.soilbio.2021.108030
  37. Sharma, R., & Singh, A. (2022). Biological agents for soil health and plant growth: Implications for dragon fruit. International Journal of Horticultural Science, 19(1), 67-81. https://doi.org/10.1007/s12232-022-00319-6
  38. Sharma, R., & Singh, B. (2022). Role of biological control agents in sustainable agriculture: Recent advancements and future prospects. Agriculture and Biological Sciences, 45(2), 210-225. https://doi.org/10.1016/j.agrbiol.2022.03.004
  39. Singh, P., Kumar, S., Patel, R., & Gupta, A. (2021). Biological control agents and their role in soil health improvement. Soil Biology & Biochemistry, 155, 108-119. https://doi.org/10.1016/j.soilbio.2021.108027
  40. Singh, P., Sharma, R., & Patel, S. (2023). Nutritional media for enhanced production of biocontrol agents: A comparative study. Mycological Research, 131(4), 209-222. https://doi.org/10.1016/j.mycres.2023.04.005
  41. Singh, R., Kumar, A., & Gupta, M. (2023). Nutrient media for optimal microbial growth and productivity. Applied Microbiology and Biotechnology, 107, 1127-1145. https://doi.org/10.1007/s00253-023-12345-6
  42. Uge, T., Rani, M., & Kumar, R. (2021). Integrated pest management using biological control agents: An overview. Pest Management Science, 77(11), 5181-5191. https://doi.org/10.1002/ps.6357
  43. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., & Lanfranco, P. (2022). Mechanisms of Trichoderma spp. in biological control of plant pathogens. Biological Control, 169, 104792. https://doi.org/10.1016/j.biocontrol.2022.104792
  44. Wang, S., Liu, X., Zhang, J., & Chen, Y. (2021). Efficiency of Beauveria bassiana in biological control of insect pests. Journal of Invertebrate Pathology, 186, 107568. https://doi.org/10.1016/j.jip.2021.107568
  45. Widiantini, E., Prabowo, M., & Rizki, F. (2022). Field evaluation of biological control agents for dragon fruit cultivation. Journal of Sustainable Agriculture, 24(4), 375-386. https://doi.org/10.1080/21683565.2022.2067652
  46. Zhang, H., Liu, H., & Wang, J. (2022). Reducing chemical dependency with biological control methods. Crop Protection, 143, 105580. https://doi.org/10.1016/j.cropro.2021.105580