Main Article Content


Background: Tuberculosis is a lung disease caused by Mycobacterium tuberculosis. In 2018, the incidence of tuberculosis in Indonesia was 1,017,290. The number of cases was accompanied by an increase in the number of resistances to first-line antibiotics (rifampicin) used due to patient non-compliance as well as the long duration of treatment. The increase in resistance around the world is always increasing every year by about 2%. Therefore, we need another alternative to existing plants in Indonesia that has the potential to be a solution to the problem and overcome resistance to these treatments.
Objective: This review was conducted to find out the potential of Peperomia pellucida as an antituberculosis drug that can be a solution to rifampicin resistance in tuberculosis disease.
Results: The results of the literature review showed that the Peperomia pellucida or suruhan plants have antibacterial potential against Mycobacterium tuberculosis because it contains a class of alkaloid compounds that function to inhibit deprenyl-phosphoryl-β-D-ribose-2 oxidase (an enzyme responsible for the biosynthesis of arabinogalactan in the cell walls of Mycobacterium tuberculosis), a flavonoid that has activity inhibition of fatty acid synthase II (FAS-II) enzymes, tannins that can precipitate proteins in Mycobacterium tuberculosis, and triterpenoids that have an activation mechanism of intracellular killing cascades in host cells during tuberculosis bacterial infection.
Conclusion: Peperomia pellucida or suruhan plants have the potential to be further investigated as a solution to overcome rifampicin resistance in tuberculosis disease.
Keywords: Mycobacterium tuberculosis, rifampicin resistance, Peperomia pellucida


Mycobacterium tuberculosis rifampicin resistance Peperomia pellucida

Article Details


  1. Angelina M., Amelia P., Irsyad M., Meilawati L., & Hanafi M. (2015). Karakterisasi Ekstrak Etanol Herba Katumpangan Air ( Peperomia pellucida L . Kunth ) ( Characterization of Ethanol Extract from Katumpangan Air Herbs (Peperomia). Universitas Islam Negeri Jakarta, 6(2), 53–61.
  2. Asif S. A. Bin, Khan S. B., & Asiri A. M. (2014). Efficient Solar Photocatalyst Based On Cobalt Oxide/Iron Oxide Composite Nanofibers For The Detoxification of Organic Pollutants. Nanoscale Research Letters, 9(1), 1–9.
  3. Bhatia R. & Narain J. P. (2010). The Growing Challenge of Antimicrobial Resistance In The South-East Asia Region - Are We Losing The Battle?. Indian Journal of Medical Research, 132(11), 482–486.
  4. Chung KT, Wong TY, Wei CI, Huang YW, & Lin Y. (1998). Tannins and Human Health: A Review. Critical Reviews in Food Science and Nutrition, 38(6), 421–464.
  5. Dheda K., Barry C. E. & Maartens G. (2016). Tuberculosis. The Lancet, 387(10024), 1211–1226.
  6. Falzon D, Mirzayev F, Wares F, Baena IG, Zignol M, Linh N, Weyer K, Jaramillo E, Floyd K, & Raviglione M. (2015). Multidrug-Resistant Tuberculosis Around The World: What Progress Has Been Made?. European Respiratory Journal, 45(1), 150–160.
  7. Fri R. & Rantelino V. (2018). Bunga Rampai Saintika. Fk Uki, 7, 51–52.
  8. García MT, Carreño D, Tirado-Vélez JM, Ferrándiz MJ, Rodrigues L, Gracia B, Amblar M, Ainsa JA, & de la Campa AG. (2018). Boldine-derived Alkaloids Inhibit The Activity of DNA Topoisomerase I and Growth of Mycobacterium tuberculosis. Frontiers in Microbiology, 9, 1–9.
  9. Harris AD, Pineles L, Belton B, Johnson JK, Shardell M, Loeb M, Newhouse R, Dembry L, Braun B, Perencevich EN, Hall KK, Morgan DJ; Benefits of Universal Glove and Gown (BUGG) Investigators; Shahryar SK, Price CS, Gadbaw JJ, Drees M, Kett DH, Muñoz-Price LS, Jacob JT, Herwaldt LA, Sulis CA, Yokoe DS, Maragakis L, Lissauer ME, Zervos MJ, Warren DK, Carver RL, Anderson DJ, Calfee DP, Bowling JE, & Safdar N. (2014). Universal Glove and Gown Use and Acquisition of Antibiotic-Resistant Bacteria in the ICU’, Survey of Anesthesiology, 58(4), 158–159.
  10. Hidjrawan, Yusi. (2018). Identifikasi Senyawa Tanin Pada Daun Belimbing Wuluh (Averrhoa bilimbi L.). Jurusan Teknik Industri, 4(2), 78–82.
  11. Hu Y, Wu X, Luo J, Fu Y, Zhao L, Ma Y, Li Y, Liang Q, Shang Y, & Huang H. (2017). Detection of Pyrazinamide Resistance of Mycobacterium tuberculosis Using Nicotinamide As A Surrogate. Clinical Microbiology and Infection, 23(11), 835–838.
  12. Idris O., Olatunji B. & Madufor P. (2016). In vitro Antibacterial Activity of the Extracts of Peperomia pellucida (L). British Microbiology Research Journal, 11(4), 1–7.
  13. Julianto T. S. (2019). Fitokimia Tinjauan Metabolit Sekunder dan Skrining Fitokimia, Journal of Chemical Information and Modeling.
  14. Kaczmarek B. (2020). Tannic Acid With Antiviral and antibacterial Activity As A Promising Component of Biomaterials-A Minireview. Materials, 13(14). 10.3390/ma13143224.
  15. Kemenkes RI. (2014). Pedoman Nasional Pengendalian Tuberkulosis-Keputusan Menteri Kesehatan Republik Indonesia Nomor 364. Kementerian Kesehatan Republik Indonesia, (Pengendalian Tuberkulosis), 200.
  16. Kemenkes RI. (2021). TB MDR. diakses di (pada: 17 February 2022).
  17. Khakia T. I. (2012). Alkaloids and Alkaloids Plants. Turkey: Adana University Industry Joint Research Center.
  18. Kumar S. & Pandey A. K. (2007). Chemistry and Biological Activities of Flavonoids: An Overview. Farmacevtski Vestnik, 58(4), 145–148.
  19. Li DH, Chung YS, Gloyd M, Joseph E, Ghirlando R, Wright GD, Cheng YQ, Maurizi MR, Guarné A, & Ortega J. (2010). Acyldepsipeptide Antibiotics Induce The Formation of A Structured Axial Channel In ClpP: A Model For The ClpX/ClpA-bound State of ClpP. Chemistry and Biology, 17(9), 959–969.
  20. López-García S, Castañeda-Sanchez JI, Jiménez-Arellanes A, Domínguez-López L, Castro-Mussot ME, Hernández-Sanchéz J, & Luna-Herrera J. (2015). Macrophage Activation By Ursolic and Oleanolic Acids During Mycobacterial Infection. Molecules, 20(8), 14348–14364.
  21. Mason T, Trochez C, Thomas R, Babar M, Hesso I, & Kayyali R. (2018). Knowledge and Awareness of The General Public and Perception of Pharmacists About Antibiotic Resistance. BMC Public Health, 18(1), 1–10.
  22. Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, & Tiwari VK. (2017). Drug Development Against Tuberculosis: Impact of Alkaloids. European Journal of Medicinal Chemistry, 137, 504–544.
  23. Mittal G, Bisht M, Pai VS, & Handu S. (2023). The Cost-Effectiveness of and Adherence to Disease-Modifying Antirheumatic Drug (DMARD) Therapy in Rheumatoid Arthritis Patients in a Tertiary Care Teaching Hospital in Uttarakhand, India. Cureus, 15(2).
  24. Netala, V. R., Ghosh, S. B., Bobbu, P., Anitha, D., Tartte, V. (2015). Triterpenoid Saponins: A Review On Biosynthesis, Applications and Mechanism of Their Action. International Journal of Pharmacy and Pharmaceutical Sciences, 7(1), 24–28.
  25. Nikmawati A., Windarwati W. & Hardjoeno, H. (2018). Resistensi Mycobacterium tuberculosis Terhadap Obat Anti Tuberkulosis. Indonesian Journal of Clinical Pathology and Medical Laboratory, 12(2), 58.
  26. Nyandoro SS, Munissi JJ, Kombo M, Mgina CA, Pan F, Gruhonjic A, Fitzpatrick P, Lu Y, Wang B, Rissanen K, & Erdélyi M. (2017). Flavonoids from Erythrina schliebenii. Journal of Natural Products, 80(2), 377–383.
  27. Okoh SO, Iweriebor BC, Okoh OO, & Okoh AI. (2017). Bioactive Constituents, Radical Scavenging, and Antibacterial Properties of the Leaves and Stem Essential Oils from Peperomia pellucida (L.) Kunth. Pharmacognosy Magazine, 13(3), 392–400.
  28. De Oliveira, J. C. S., da Camara, C. A. G., Neves, R. C. S., Botelho, P. S. (2017). Chemical Composition and Acaricidal Activity of Essential Oils From Peperomia pellucida kunth. Against Tetranychus Urticae. Revista Virtual de Quimica, 9(6), 2204–2213.
  29. Oloyede G. & Onocha P. (2011). Phytochemical, Toxicity, Antimicrobial and Antioxidant Screening of Leaf Extracts of Peperomia pellucida from Nigeria’, Advances in Environmental Biology, 5(12), 3700–3709.
  30. Panseeta P, Lomchoey K, Prabpai S, Kongsaeree P, Suksamrarn A, Ruchirawat S, & Suksamrarn S. (2011). Antiplasmodial and Antimycobacterial Cyclopeptide Alkaloids From The Root of Ziziphus mauritiana, Phytochemistry, 72(9), 909–915.
  31. Pérez-González MZ, Gutiérrez-Rebolledo GA, Yépez-Mulia L, Rojas-Tomé IS, Luna-Herrera J, Jiménez-Arellanes MA. (2017). Antiprotozoal, Antimycobacterial, and Anti-Inflammatory Evaluation of Cnidoscolus chayamansa (Mc Vaugh) Extract and The Isolated Compounds. Biomedicine and Pharmacotherapy, 89, 89–97.
  32. Rabaan AA, Alhumaid S, Albayat H, Alsaeed M, Alofi FS, Al-Howaidi MH, Turkistani SA, Alhajri SM, Alahmed HE, Alzahrani AB, Mashraqi MM, Alwarthan S, Alhajri M, Alshahrani FS, Almuthree SA, Alsubki RA, Abuzaid AA, Alfaresi M, Al Fares MA, & Mutair AA. (2022). Promising Antimycobacterial Activities of Flavonoids against Mycobacterium sp. Drug Targets: A Comprehensive Review. Molecules, 27(16), 1–15.
  33. Radji M., Kurniati M. & Kiranasari A. (2015). Comparative Antimycobacterial Activity of Some Indonesian Medicinal Plants Against Multi-Drug Resistant Mycobacterium tuberculosis, Journal of Applied Pharmaceutical Science, 5(1), 019–022.
  34. Rollando. (2017). Pendekatan Struktur Aktivitas dan Penambatan Molekul Senyawa 2-iminoethyl 2-(2-(1-hydroxypentan-2-yl) phenyl) acetate Hasil Isolasi Fungi Endofit Genus Fusarium sp pada Enzim β-ketoasil-ACP KasA Sintase. Pharmaceutical Journal of Indonesia, 3(2), 45–51.
  35. Shrestha D, Maharjan B, Thida Oo NA, Isoda N, Nakajima C, & Suzuki Y. (2020). Molecular Analysis of Streptomycin-Resistance Associating Genes in Mycobacterium tuberculosis Isolates from Nepal. Tuberculosis, 125, 101985.
  36. Tam KK, Leung KS, To SW, Siu GK, Lau TC, Shek VC, Tse CW, Wong SS, Ho PL, & Yam WC. (2017). Direct detection of Mycobacterium tuberculosis and drug resistance in respiratory specimen using Abbott Realtime MTB detection and RIF/INH resistance assay. Diagnostic Microbiology and Infectious Disease, 89(2), 118-124.
  37. TB Alliance. (2023). Clinical Development and Marketed Products. diakses di (pada: 8 December 2023).
  38. Tenero D, Derimanov G, Carlton A, Tonkyn J, Davies M, Cozens S, Gresham S, Gaudion A, Puri A, Muliaditan M, Rullas-Trincado J, Mendoza-Losana A, Skingsley A, & Barros-Aguirre D. (2019). First-Time-in-Human Study and Prediction of Early Bactericidal Activity for GSK3036656, a Potent Leucyl-tRNA Synthetase Inhibitor for Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 63(8).
  39. Tim Riskesdas. (2019). Laporan Di Provinsi Yogyakarta Riskesdas 2018. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan (LPB).
  40. Tiwari R, Moraski GC, Krchňák V, Miller PA, Colon-Martinez M, Herrero E, Oliver AG, & Miller MJ. (2013). Thiolates Chemically Induce Redox Activation of BTZ043 and Related Potent Nitroaromatic Anti-Tuberculosis Agents. Journal of the American Chemical Society, 135(9), 3539–3549.
  41. Tran AT, Watson EE, Pujari V, Conroy T, Dowman LJ, Giltrap AM, Pang A, Wong WR, Linington RG, Mahapatra S, Saunders J, Charman SA, West NP, Bugg TD, Tod J, Dowson CG, Roper DI, Crick DC, Britton WJ, & Payne RJ. (2017). Sansanmycin Natural Product Analogues As Potent and selective Anti-Mycobacterials That Inhibit Lipid I Biosynthesis. Nature Communications, 8, 1–9.
  42. Truong NB, Pham CV, Doan HT, Nguyen HV, Nguyen CM, Nguyen HT, Zhang HJ, Fong HH, Franzblau SG, Soejarto DD, & Chau MV. (2011). Antituberculosis Cycloartane Triterpenoids From Radermachera boniana. Journal of Natural Products, 74(5), 1318–1322.
  43. Wei LS, Wee W, Fu Siong JY, & Syamsumir DF. (2011). Characterization of Anticancer, Antimicrobial, Antioxidant Properties and Chemical Compositions of Peperomia pellucida Leaf Extract. Acta Medica Iranica, 49(10), 670–674.
  44. WHO. (2022). WHO consolidated guidelines on tuberculosis., WHO Press.
  45. WHO. (2013). Global Tuberculosis Report. France: World Health Organization.
  46. Zhao P, Li XJ, Zhang SF, Wang XS, & Liu CY. (2012). Social Behaviour Risk Factors For Drug Resistant Tuberculosis In Mainland China: A Meta-Analysis. Journal of International Medical Research, 40(2), 436–445.