Main Article Content

Abstract

Eurocentric myths about Western scientific and technological superiority persist in popular culture and some scholarly circles. A prevalent myth suggests that Islamic contributions to modern science were primarily the transmission of ancient Greek and Roman knowledge to medieval and early modern Europe. A less extreme version posits significant contributions during Islam's "Golden Age," followed by a decline between the late eleventh and late fourteenth centuries. This paper challenges these narratives, presenting recent scholarship that demonstrates continuous major advances in astronomy, physics, mathematics, and medicine by Islamic scholars throughout the late Middle Ages and into the early modern period. The study underscores the inadequacy of the classical narrative, which claims that Islamic scientific activity declined after an initial period of prosperity. Historians like Eugene von Grunebaum, Otto Neugebauer, and George Saliba have provided evidence that Islamic scholars not only preserved ancient knowledge but also made original contributions that influenced later European developments. This includes advancements in fields such as astronomy, where figures like Nasir al-Din al-Tusi and Ibn al-Shatir developed models later utilized by Copernicus. The paper also highlights continued progress in medicine and mathematics, with scholars like Al-Razi and Ibn Sina making lasting impacts on European scientific thought. The article argues for a re-evaluation of the role of Islamic sciences, emphasizing that many significant contributions remain understudied due to a lack of accessible manuscript sources. By debunking the myth of decline, the paper calls for recognition of the dynamic and sustained intellectual activity within Islamic cultures, which continued to produce influential scientific work well into the early modern era.

Keywords

astronomy classical narrative Islamic sciences knowledge transmission mathematics medicine myth of decline

Article Details

How to Cite
Lucas, A. . (2024). Re-Evaluating the Development of the Islamic Sciences: The Case Against the Classical Narrative and the Myth of Decline. Unisia, 42(1), 57–86. https://doi.org/10.20885/unisia.vol42.iss1.art3

References

  1. Abdalla, M. (2004). The fate of islamic science between the Eleventh and Sixteenth Centuries: A comprehensive review of scholarship from Ibn Khaldun to the present. Humanomics, 20(3), 26–57. https://doi.org/10.1108/eb018895

  2. Abdalla, M. (2008). Islamic science: The Myth of the decline theory. VDM Verlag.

  3. Adamson, P. (2021). Abu Bakr al-Razi. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2025/entries/abu-bakr-al-razi/

  4. Al-Ḥasan, A. Y., & Hill, D. R. (1994). Islamic technology: An illustrated history (Repr). Cambridge Univ. Pr. [u.a.].

  5. Ansari, A. S. B. (1976). Abu Bakr Muhammad Ibn Yahya Al-Razi: Universal scholar and scientist. Islamic Studies, 15(3), 155–166. https://www.jstor.org/stable/20847003

  6. Applebaum, W. (2003). Encyclopedia of the scientific revolution: From Copernicus to Newton. Routledge. https://doi.org/10.4324/9780203801864

  7. Bala, A. (2006). The Dialogue of civilizations in the birth of modern science. Palgrave Macmillan US. https://doi.org/10.1057/9780230601215

  8. Bala, A. (Ed.). (2012). Asia, Europe, and the emergence of modern science. Palgrave Macmillan US. https://doi.org/10.1057/9781137031730

  9. Burns, W. E. (2001). The Scientific revolution: An encyclopedia. ABC-CLIO.

  10. Chemla, K., Morelon, R., & Allard, A. (1986). La tradition Arabe de Diophante d’Alexandrie: À propos de quatre livres des Arithmétiques perdus en Grec retrouvés en Arabe [The Arabic tradition of Diophantus of Alexandria: on four books of Arithmetic lost in Greek but found in Arabic]. L’antiquité classique, 55(1), 351–375. https://doi.org/10.3406/antiq.1986.2193

  11. Djebbar, A. (1995). On mathematical activities in North Africa since the 9th century. First part: Mathematics in the medieval Maghreb. AMUCHMA Newsletter, 15, 3–42. https://www.researchgate.net/publication/293107783_On_mathematical_activities_in_North_Africa_since_the_9th_century_First_part_mathematics_in_the_medieval_Maghreb

  12. Djebbar, A. (2013). Al-Khwârizmî – L’algèbre et le calcul indien. ACL-les Éditions du Kangourou.

  13. Duhem, P. (1911). History of physics. In The Catholic Encyclopedia. Robert Appleton Company. https://www.newadvent.org/cathen/12047a.htm

  14. Fakhry, M. (2004). A history of Islamic philosophy (3rd ed.). Columbia University Press.

  15. Gingerich, O. (1986). Islamic astronomy. Scientific American, 254(4), 74–83. https://www.jstor.org/stable/24975932

  16. Gouguenheim, S. (2008). Aristote au mont Saint-Michel: Les racines Grecques de l’Europe Chrétienne [Aristotle at Mont Saint-Michel: The Greek roots of Christian Europe]. Seuil.

  17. Grant, E. (2008). The Fate of Ancient Greek natural philosophy in the Middle Ages: Islam and Western Christianity. The Review of Metaphysics, 61(3), 503–526. https://www.jstor.org/stable/20130975

  18. Greppin, J. A. C., Savage-Smith, E., & Gueriguian, J. L. (Eds.). (1999). The diffusion of Greco-Roman medicine into the Middle East and the Caucasus. Caravan Books.

  19. Hartner, W. (1969). Nasir al-Din al-Tusi’s lunar theory. Physis, 11, 287–304.

  20. Hartner, W. (1973). Copernicus, the man, the work and its history. Proceedings of the American Philosophical Society, 117, 413–422.

  21. Hartner, W. (1975). The Islamic astronomical background to Nicholas Copernicus. In O. Gingerich & J. Dobrzycki (Eds.), Tudia Copernicana XI11 (Colloquia Copernicana 111) (pp. 7–16). Ossolineum.

  22. Haskins, C. H. (1927). The Renaissance of the Twelfth Century. Harvard University Press.

  23. Hill, D. R. (1998). Studies in medieval Islamic technology: From Philo to al-Jazarī, from Alexandria to Diyār Bakr. Ashgate.

  24. Hogendijk, J. P. (2002). Two Editions of Ibn al-Haytham’s Completion of the Conics. Historia Mathematica, 29(3), 247–265. https://doi.org/10.1006/hmat.2002.2352

  25. Hogendijk, J. P. (2004). Ideals and realities in Ibn al-Haytham’s mathematical oeuvre. Early Science and Medicine, 9(1), 37–43. https://doi.org/10.1163/1573382041153160

  26. Hogendijk, J. P. (2005). Applied mathematics in Eleventh Century Al-Andalus: Ibn Mucadh al-Jayyan and his computation of astrological houses and aspects. Centaurus, 47(2), 87–114. https://doi.org/10.1111/j.1600-0498.2005.470201.x

  27. Hogendijk, J. P., & Sabra, A. I. (Eds.). (2003). The Enterprise of science in Islam: New perspectives. The MIT Press.

  28. Huff, T. E. (2017). The Rise of early modern science: Islam, China, and the West (3rd ed.). Cambridge University Press.

  29. Institut für Geschichte der Arabisch-Islamischen Wissenschaften. (2021, August 21). Islamic mathematics and astronomy [HTML]. Goethe-Universität. https://www.uni-frankfurt.de/58972120/ISLAMIC_MATHEMATICS_AND_ASTRONOMY

  30. Iskandar, A. Z. (2008). Al‐Rāzī. In H. Selin (Ed.), Encyclopaedia of the history of science, technology, and medicine in Non-Western cultures (pp. 155–156). Springer Netherlands. https://doi.org/10.1007/978-1-4020-4425-0_9326

  31. Kennedy, E. S. (1966). Late Medieval planetary theory. Isis, 57(3), 365–378. https://doi.org/10.1086/350144

  32. Kennedy, E. S. (1983). Studies in the exact Islamic sciences. Syracuse University Press.

  33. Kennedy, E. S. (1984). Two Persian astronomical treatises by Nasr al-Din al Tusi. Centaurus, 27(2), 109–120. https://doi.org/10.1111/j.1600-0498.1984.tb00763.x

  34. Kennedy, E. S. (1998). Astronomy and astrology in the Medieval Islamic World (1st ed). Taylor & Francis Group.

  35. Kennedy, E. S., & Roberts, V. (1959). The Planetary theory of Ibn al-Shāṭir. Isis, 50(3), 227–235. https://doi.org/10.1086/348774

  36. King, D. A. (1986). Islamic mathematical astronomy. Variorum Reprints.

  37. King, D. A. (1999). World-maps for finding the direction and distance to Mecca: Innovation and tradition in Islamic science. Brill. https://doi.org/10.1163/9789004450738

  38. King, D. A. (2003). 14th-Century England or 9th-Century Baghdad? New insights on the elusive astronomical instrument called navicula de venetiis. Centaurus, 45(1–4), 204–226. https://doi.org/10.1111/j.1600-0498.2003.450117.x

  39. King, D. A. (2004). In synchrony with the heavens, Voluume 1 Call of the Muezzin (Studies I-IX). Brill.

  40. King, D. A. (2005). In synchrony with the heavens, Volume 2 Instruments of mass calculation (Studies X-XVIII). Brill.

  41. King, D. A. (2007). Astrolabes and angels, epigrams and enigmas: From Regiomontanus’ acrostic for Cardinal Bessarion to Piero della Francesca’s flagellation of Christ. Franz Steiner Verlag.

  42. King, D. A. (2010). Edward Stewart Kennedy (1912–2009). Journal for the History of Astronomy, 41(1), 117–119. https://doi.org/10.1177/002182861004100106

  43. King, D. A. (2011). Astrolabes from medieval Europe. Ashgate Variorum.

  44. Langermann, Y. T. (2018). Babylonian and Indian wisdoms in Islamicate culture. Oriens, 46(3–4), 435–475. https://doi.org/10.1163/18778372-04603004

  45. Lindberg, D. C. (2007). The Beginnings of Western science: The European scientific tradition in philosophical, religious, and institutional context, Prehistory to A.D. 1450 (2nd ed.). University of Chicago Press.

  46. Lizzini, O. (2020). Ibn Sina’s metaphysics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2021/entries/ibn-sina-metaphysics/

  47. Lucas, A. (2006). Wind, water, work: Ancient and medieval milling technology. Brill. https://doi.org/10.1163/9789047417224

  48. Marmura, M. E. (2000). Translator’s introduction (M. E. Marmura, Trans.). In A. H. M. al-Ghazali, The Incoherence of the philosophers (2nd ed., pp. xv–xxvii). Brigham Young University.

  49. McGinnis, J. (2010). Avicenna. Oxford University Press.

  50. McGinnis, J. (2020). Ibn Sina’s natural philosophy. In E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2025/entries/ibn-sina-natural/

  51. Meyerhof, M. (1928). An Arabic compendium of medico-philosophical definitions. Isis, 10(2), 340–349. https://doi.org/10.1086/346327

  52. Meyerhof, M. (1931). Science and medicine. In T. Arnold & A. Guillaume (Eds.), The Legacy Of Islam (pp. 311–355). Oxford University Press.

  53. Meyerhof, M. (1935). Thirty-three clinical observations by Rhazes (Circa 900 A.D.). Isis, 23(2), 321–372. https://doi.org/10.1086/346968

  54. Morelon, R. (1994). Ṯābit B. Qurra and Arab astronomy in the 9th Century. Arabic Sciences and Philosophy, 4(1), 111–139. https://doi.org/10.1017/S0957423900001879

  55. Morelon, R. (2000). Ibn al-Haytham et ses arguments cosmologiques [Ibn al-Haytham and his cosmological arguments]. Épistémologiques, 1(1–2), 101. https://doi.org/10.11606/issn.1982-3568.epistemologiques.2000.105067

  56. Morrison, R. (2014a). A scholarly intermediary between the Ottoman Empire and Renaissance Europe. Isis, 105(1), 32–57. https://doi.org/10.1086/675550

  57. Morrison, R. (2014b). What was the purpose of astronomy in Ījī’s Kitāb al-Mawāqif fī ʿIlm al-Kalām? In J. Pfeiffer (Ed.), Politics, patronage and the transmission of knowledge in 13th—15th Century Tabriz (pp. 201–229). Brill. https://doi.org/10.1163/9789004262577_009

  58. Mozaffari, S. M. (2013). Limitations of methods: The accuracy of the values measured for the earth’s/sun’s orbital elements in the Middle East, A.D. 800–1500, Part 1. Journal for the History of Astronomy, 44(3), 313–336. https://doi.org/10.1177/002182861304400305

  59. Mozaffari, S. M. (2016). Planetary latitudes in medieval Islamic astronomy: An analysis of the non-Ptolemaic latitude parameter values in the Maragha and Samarqand astronomical traditions. Archive for History of Exact Sciences, 70(5), 513–541. https://doi.org/10.1007/s00407-015-0172-x

  60. Mozaffari, S. M. (2017). Holding or breaking with Ptolemy’s generalization: Considerations about the motion of the planetary apsidal lines in medieval Islamic astronomy. Science in Context, 30(1), 1–32. https://doi.org/10.1017/S0269889717000011

  61. Mozaffari, S. M. (2018). An analysis of medieval solar theories. Archive for History of Exact Sciences, 72(2), 191–243. https://doi.org/10.1007/s00407-018-0207-1

  62. Mozaffari, S. M. (2019). The orbital elements of venus in Medieval Islamic astronomy: Interaction between traditions and the accuracy of observations. Journal for the History of Astronomy, 50(1), 46–81. https://doi.org/10.1177/0021828618808877

  63. Neugebauer, O. (1945). The History of Ancient astronomy problems and methods. Journal of Near Eastern Studies, 4(1), 1–38. https://doi.org/10.1086/370729

  64. Neugebauer, O. (1957). The exact sciences in antiquity. Brown University Press.

  65. Neugebauer, O. (1969). The exact sciences in Antiquity (2nd ed.). Dover Publications.

  66. Neugebauer, O. (1975). A History of Ancient mathematical astronomy. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-61910-6

  67. Neugebauer, O. (1983). Astronomy and history selected essays. Springer New York. https://doi.org/10.1007/978-1-4612-5559-8

  68. Nikfahm-Khubravan, S., & Ragep, F. J. (2019). The Mercury models of Ibn Al-Šāṭir and Copernicus. Arabic Sciences and Philosophy, 29(1), 1–59. https://doi.org/10.1017/S0957423918000085

  69. Pormann, P., & Savage-Smith, E. (2007). Medieval Islamic medicine. Edinburgh University Press. https://doi.org/10.1515/9780748629244

  70. Ragep, F. J. (1987). The Two versions of the Tūsi couple. Annals of the New York Academy of Sciences, 500(1), 329–356. https://doi.org/10.1111/j.1749-6632.1987.tb37210.x

  71. Ragep, F. J. (2001a). Freeing astronomy from philosophy: An aspect of Islamic influence on science. Osiris, 16(1), 49–71. https://doi.org/10.1086/649338

  72. Ragep, F. J. (2001b). Tūsī and Copernicus: The earth’s motion in context. Science in Context, 14(1–2), 145–163. https://doi.org/10.1017/S0269889701000060

  73. Ragep, F. J. (2005). c Alīqushjī and Regiomontanus: Eccentric transformations and Copernican revolutions. Journal for the History of Astronomy, 36(4), 359–371. https://doi.org/10.1177/002182860503600401

  74. Ragep, F. J. (2007). Copernicus and his Islamic predecessors: Some historical remarks. History of Science, 45(1), 65–81. https://doi.org/10.1177/007327530704500103

  75. Ragep, F. J. (2009). David C. Lindberg.  The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, Prehistory to a.d. 1450 . Second edition. Xvi + 488 pp., figs., bibl., index. Chicago/London: University of Chicago Press, 2007. $25 (paper). Isis, 100(2), 383–385. https://doi.org/10.1086/605220

  76. Ragep, F. J. (2016). Ibn al-Shāṭir and Copernicus: The Uppsala notes revisited. Journal for the History of Astronomy, 47(4), 395–415. https://doi.org/10.1177/0021828616678508

  77. Rahman, S., Street, T., & Tahiri, H. (Eds.). (2008). The unity of science in the Arabic tradition: Science, logic, epistemology and their interactions. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8405-8

  78. Rapoport, Y., & Savage-Smith, E. (Eds.). (2014). An eleventh-century Egyptian guide to the universe: The Book of curiosities. Brill.

  79. Rashed, R. (2014). Classical mathematics from Al-Khwarizmi to Descartes. Routledge. https://doi.org/10.4324/9781315753867

  80. Rashed, R., & Morelon, R. (1996). Encyclopedia of the history of Arabic science Volume 3 Technology, alchemy and life sciences (1st ed.). Routledge. https://doi.org/10.4324/9780203086537

  81. Renan, E. (1883). Islam and science. A lecture presented at La Sorbonne on 29 March 1883.

  82. Roberts, V. (1957). The Solar and lunar theory of Ibn ash-Shāṭir: A Pre-Copernican Copernican model. Isis, 48(4), 428–432. https://doi.org/10.1086/348609

  83. Roberts, V. (1966). The Planetary theory of Ibn al-Shatir: Latitudes of the planets. Isis, 57(2), 208–219. https://doi.org/10.1086/350114

  84. Sabra, A. I. (1984). The Andalusian revolt against Ptolemaic astronomy: Averroes and al-Bitruji. In E. Mendelsohn (Ed.), Transformation and tradition in the sciences: Essays in honor of I. Bernard Cohen (pp. 233–253). Cambridge University Press.

  85. Sabra, A. I. (1987). The Appropriation and subsequent naturalization of Greek Science in Medieval Islam: A preliminary statement. History of Science, 25(3), 223–243. https://doi.org/10.1177/007327538702500301

  86. Sabra, A. I. (1989). The Optics Of Ibn Al Haytham, Books I-III, On direct vision. The Warburg Institute, University of London. http://archive.org/details/A.I.Sabraed.Trans.TheOpticsOfIbnAlHaythamBooksIIIIOnDirectVision.TranslatedWithI

  87. Sabra, A. I. (1996). Situating Arabic science: Locality versus essence. Isis, 87(4), 654–670. https://doi.org/10.1086/357651

  88. Saliba, G. (1979). The First Non-Ptolemaic astronomy at the Maraghah school. Isis, 70(4), 571–576. https://doi.org/10.1086/352344

  89. Saliba, G. (1995). A History of Arabic astronomy: Planetary theories during the Golden Age of Islam. NYU Press.

  90. Saliba, G. (1999). Critiques of Ptolemaic astronomy in Islamic Spain. Al-Qanṭara, 20(1), 3. https://doi.org/10.3989/alqantara.1999.v20.i1.449

  91. Saliba, G. (2000). Arabic versus Greek Astronomy: A Debate over the foundations of science. Perspectives on Science, 8(4), 328–341. https://doi.org/10.1162/106361400753373713

  92. Saliba, G. (2002). Greek astronomy and the Medieval Arabic tradition. American Scientist, 90(4), 360. https://doi.org/10.1511/2002.27.850

  93. Saliba, G. (2007). Islamic science and the making of the European Renaissance. The MIT Press. https://doi.org/10.7551/mitpress/3981.001.0001

  94. Saliba, G. (2009). Islamic reception of Greek astronomy. Proceedings of the International Astronomical Union, 5(S260), 149–165. https://doi.org/10.1017/S1743921311002237

  95. Samsó, J. (2018). Astronomy and astrology in al-Andalus and the Maghrib (2nd ed.). Routledge.

  96. Sarton, G. (1966). 5. Islamic science. In T. C. Young, Near Eastern Culture and Society (pp. 83–98). Princeton University Press. https://doi.org/10.1515/9781400886845-007

  97. Savage-Smith, E. (1988). Gleanings from an Arabist’s workshop: Current trends in the study of Medieval Islamic science and medicine. Isis, 79(2), 246–266. https://doi.org/10.1086/354701

  98. Savage-Smith, E. (2002). Galen’s lost Ophthalmology and the Summaria Alexandrinorum. Bulletin of the Institute of Classical Studies, 45(Supplement_77), 121–138. https://doi.org/10.1111/j.2041-5370.2002.tb02285.x

  99. Savage-Smith, E. (2013). Medicine in Medieval Islam. In D. C. Lindberg & M. H. Shank (Eds.), The Cambridge history of science: Volume 2, Medieval science (pp. 139–167). Cambridge University Press.

  100. Schuster, J. A. (1979). Kuhn and Lakatos and the history of science: Kuhn and Lakatos revisited. The British Journal for the History of Science, 12(3), 301–317. https://doi.org/10.1017/S0007087400017374

  101. Schuster, J. A. (2016). [Review of Review of Thomas Kuhn’s Revolutions: A Historical and an Evolutionary Philosophy of Science?, by J. A. Marcum]. Notre Dame Philosophical Reviews. https://ndpr.nd.edu/reviews/thomas-kuhns-revolutions-a-historical-and-an-evolutionary-philosophy-of-science/

  102. Selin, H. (Ed.). (2008). Encyclopaedia of the history of science, technology, and medicine in Non-Western cultures. Springer Netherlands. https://doi.org/10.1007/978-94-007-3934-5

  103. Smith, A. (1869). The Essays of Adam Smith (J. Black & J. Hutton, Eds.). Alex Murray & Son. https://www.gutenberg.org/ebooks/58559

  104. Swerdlow, N. M. (1973). The Derivation and first draft of Copernicus’s planetary theory: A translation of the Commentariolus with commentary. Proceedings of the American Philosophical Society, 117(6), 423–512. https://www.jstor.org/stable/986461

  105. Swerdlow, N. M. (2017). Copernicus’s derivation of the heliocentric theory from regiomontanus’s eccentric models of the second inequality of the superior and inferior planets. Journal for the History of Astronomy, 48(1), 33–61. https://doi.org/10.1177/0021828617691203

  106. Swerdlow, N. M., & Neugebauer, O. (1984). Mathematical astronomy in Copernicus’s De Revolutionibus (Vol. 10). Springer New York. https://doi.org/10.1007/978-1-4613-8262-1

  107. von Grunebaum, G. E. (1924). Medieval Islam: A study in cultural orientation. University of Chicago Press.

No Related Submission Found