Main Article Content
Abstract
Eurocentric myths about Western scientific and technological superiority persist in popular culture and some scholarly circles. A prevalent myth suggests that Islamic contributions to modern science were primarily the transmission of ancient Greek and Roman knowledge to medieval and early modern Europe. A less extreme version posits significant contributions during Islam's "Golden Age," followed by a decline between the late eleventh and late fourteenth centuries. This paper challenges these narratives, presenting recent scholarship that demonstrates continuous major advances in astronomy, physics, mathematics, and medicine by Islamic scholars throughout the late Middle Ages and into the early modern period. The study underscores the inadequacy of the classical narrative, which claims that Islamic scientific activity declined after an initial period of prosperity. Historians like Eugene von Grunebaum, Otto Neugebauer, and George Saliba have provided evidence that Islamic scholars not only preserved ancient knowledge but also made original contributions that influenced later European developments. This includes advancements in fields such as astronomy, where figures like Nasir al-Din al-Tusi and Ibn al-Shatir developed models later utilized by Copernicus. The paper also highlights continued progress in medicine and mathematics, with scholars like Al-Razi and Ibn Sina making lasting impacts on European scientific thought. The article argues for a re-evaluation of the role of Islamic sciences, emphasizing that many significant contributions remain understudied due to a lack of accessible manuscript sources. By debunking the myth of decline, the paper calls for recognition of the dynamic and sustained intellectual activity within Islamic cultures, which continued to produce influential scientific work well into the early modern era.
Keywords
Article Details
Copyright (c) 2024 Adam Lucas

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
Abdalla, M. (2004). The fate of islamic science between the Eleventh and Sixteenth Centuries: A comprehensive review of scholarship from Ibn Khaldun to the present. Humanomics, 20(3), 26–57. https://doi.org/10.1108/eb018895
Abdalla, M. (2008). Islamic science: The Myth of the decline theory. VDM Verlag.
Adamson, P. (2021). Abu Bakr al-Razi. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2025/entries/abu-bakr-al-razi/
Al-Ḥasan, A. Y., & Hill, D. R. (1994). Islamic technology: An illustrated history (Repr). Cambridge Univ. Pr. [u.a.].
Ansari, A. S. B. (1976). Abu Bakr Muhammad Ibn Yahya Al-Razi: Universal scholar and scientist. Islamic Studies, 15(3), 155–166. https://www.jstor.org/stable/20847003
Applebaum, W. (2003). Encyclopedia of the scientific revolution: From Copernicus to Newton. Routledge. https://doi.org/10.4324/9780203801864
Bala, A. (2006). The Dialogue of civilizations in the birth of modern science. Palgrave Macmillan US. https://doi.org/10.1057/9780230601215
Bala, A. (Ed.). (2012). Asia, Europe, and the emergence of modern science. Palgrave Macmillan US. https://doi.org/10.1057/9781137031730
Burns, W. E. (2001). The Scientific revolution: An encyclopedia. ABC-CLIO.
Chemla, K., Morelon, R., & Allard, A. (1986). La tradition Arabe de Diophante d’Alexandrie: À propos de quatre livres des Arithmétiques perdus en Grec retrouvés en Arabe [The Arabic tradition of Diophantus of Alexandria: on four books of Arithmetic lost in Greek but found in Arabic]. L’antiquité classique, 55(1), 351–375. https://doi.org/10.3406/antiq.1986.2193
Djebbar, A. (1995). On mathematical activities in North Africa since the 9th century. First part: Mathematics in the medieval Maghreb. AMUCHMA Newsletter, 15, 3–42. https://www.researchgate.net/publication/293107783_On_mathematical_activities_in_North_Africa_since_the_9th_century_First_part_mathematics_in_the_medieval_Maghreb
Djebbar, A. (2013). Al-Khwârizmî – L’algèbre et le calcul indien. ACL-les Éditions du Kangourou.
Duhem, P. (1911). History of physics. In The Catholic Encyclopedia. Robert Appleton Company. https://www.newadvent.org/cathen/12047a.htm
Fakhry, M. (2004). A history of Islamic philosophy (3rd ed.). Columbia University Press.
Gingerich, O. (1986). Islamic astronomy. Scientific American, 254(4), 74–83. https://www.jstor.org/stable/24975932
Gouguenheim, S. (2008). Aristote au mont Saint-Michel: Les racines Grecques de l’Europe Chrétienne [Aristotle at Mont Saint-Michel: The Greek roots of Christian Europe]. Seuil.
Grant, E. (2008). The Fate of Ancient Greek natural philosophy in the Middle Ages: Islam and Western Christianity. The Review of Metaphysics, 61(3), 503–526. https://www.jstor.org/stable/20130975
Greppin, J. A. C., Savage-Smith, E., & Gueriguian, J. L. (Eds.). (1999). The diffusion of Greco-Roman medicine into the Middle East and the Caucasus. Caravan Books.
Hartner, W. (1969). Nasir al-Din al-Tusi’s lunar theory. Physis, 11, 287–304.
Hartner, W. (1973). Copernicus, the man, the work and its history. Proceedings of the American Philosophical Society, 117, 413–422.
Hartner, W. (1975). The Islamic astronomical background to Nicholas Copernicus. In O. Gingerich & J. Dobrzycki (Eds.), Tudia Copernicana XI11 (Colloquia Copernicana 111) (pp. 7–16). Ossolineum.
Haskins, C. H. (1927). The Renaissance of the Twelfth Century. Harvard University Press.
Hill, D. R. (1998). Studies in medieval Islamic technology: From Philo to al-Jazarī, from Alexandria to Diyār Bakr. Ashgate.
Hogendijk, J. P. (2002). Two Editions of Ibn al-Haytham’s Completion of the Conics. Historia Mathematica, 29(3), 247–265. https://doi.org/10.1006/hmat.2002.2352
Hogendijk, J. P. (2004). Ideals and realities in Ibn al-Haytham’s mathematical oeuvre. Early Science and Medicine, 9(1), 37–43. https://doi.org/10.1163/1573382041153160
Hogendijk, J. P. (2005). Applied mathematics in Eleventh Century Al-Andalus: Ibn Mucadh al-Jayyan and his computation of astrological houses and aspects. Centaurus, 47(2), 87–114. https://doi.org/10.1111/j.1600-0498.2005.470201.x
Hogendijk, J. P., & Sabra, A. I. (Eds.). (2003). The Enterprise of science in Islam: New perspectives. The MIT Press.
Huff, T. E. (2017). The Rise of early modern science: Islam, China, and the West (3rd ed.). Cambridge University Press.
Institut für Geschichte der Arabisch-Islamischen Wissenschaften. (2021, August 21). Islamic mathematics and astronomy [HTML]. Goethe-Universität. https://www.uni-frankfurt.de/58972120/ISLAMIC_MATHEMATICS_AND_ASTRONOMY
Iskandar, A. Z. (2008). Al‐Rāzī. In H. Selin (Ed.), Encyclopaedia of the history of science, technology, and medicine in Non-Western cultures (pp. 155–156). Springer Netherlands. https://doi.org/10.1007/978-1-4020-4425-0_9326
Kennedy, E. S. (1966). Late Medieval planetary theory. Isis, 57(3), 365–378. https://doi.org/10.1086/350144
Kennedy, E. S. (1983). Studies in the exact Islamic sciences. Syracuse University Press.
Kennedy, E. S. (1984). Two Persian astronomical treatises by Nasr al-Din al Tusi. Centaurus, 27(2), 109–120. https://doi.org/10.1111/j.1600-0498.1984.tb00763.x
Kennedy, E. S. (1998). Astronomy and astrology in the Medieval Islamic World (1st ed). Taylor & Francis Group.
Kennedy, E. S., & Roberts, V. (1959). The Planetary theory of Ibn al-Shāṭir. Isis, 50(3), 227–235. https://doi.org/10.1086/348774
King, D. A. (1986). Islamic mathematical astronomy. Variorum Reprints.
King, D. A. (1999). World-maps for finding the direction and distance to Mecca: Innovation and tradition in Islamic science. Brill. https://doi.org/10.1163/9789004450738
King, D. A. (2003). 14th-Century England or 9th-Century Baghdad? New insights on the elusive astronomical instrument called navicula de venetiis. Centaurus, 45(1–4), 204–226. https://doi.org/10.1111/j.1600-0498.2003.450117.x
King, D. A. (2004). In synchrony with the heavens, Voluume 1 Call of the Muezzin (Studies I-IX). Brill.
King, D. A. (2005). In synchrony with the heavens, Volume 2 Instruments of mass calculation (Studies X-XVIII). Brill.
King, D. A. (2007). Astrolabes and angels, epigrams and enigmas: From Regiomontanus’ acrostic for Cardinal Bessarion to Piero della Francesca’s flagellation of Christ. Franz Steiner Verlag.
King, D. A. (2010). Edward Stewart Kennedy (1912–2009). Journal for the History of Astronomy, 41(1), 117–119. https://doi.org/10.1177/002182861004100106
King, D. A. (2011). Astrolabes from medieval Europe. Ashgate Variorum.
Langermann, Y. T. (2018). Babylonian and Indian wisdoms in Islamicate culture. Oriens, 46(3–4), 435–475. https://doi.org/10.1163/18778372-04603004
Lindberg, D. C. (2007). The Beginnings of Western science: The European scientific tradition in philosophical, religious, and institutional context, Prehistory to A.D. 1450 (2nd ed.). University of Chicago Press.
Lizzini, O. (2020). Ibn Sina’s metaphysics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2021/entries/ibn-sina-metaphysics/
Lucas, A. (2006). Wind, water, work: Ancient and medieval milling technology. Brill. https://doi.org/10.1163/9789047417224
Marmura, M. E. (2000). Translator’s introduction (M. E. Marmura, Trans.). In A. H. M. al-Ghazali, The Incoherence of the philosophers (2nd ed., pp. xv–xxvii). Brigham Young University.
McGinnis, J. (2010). Avicenna. Oxford University Press.
McGinnis, J. (2020). Ibn Sina’s natural philosophy. In E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2025/entries/ibn-sina-natural/
Meyerhof, M. (1928). An Arabic compendium of medico-philosophical definitions. Isis, 10(2), 340–349. https://doi.org/10.1086/346327
Meyerhof, M. (1931). Science and medicine. In T. Arnold & A. Guillaume (Eds.), The Legacy Of Islam (pp. 311–355). Oxford University Press.
Meyerhof, M. (1935). Thirty-three clinical observations by Rhazes (Circa 900 A.D.). Isis, 23(2), 321–372. https://doi.org/10.1086/346968
Morelon, R. (1994). Ṯābit B. Qurra and Arab astronomy in the 9th Century. Arabic Sciences and Philosophy, 4(1), 111–139. https://doi.org/10.1017/S0957423900001879
Morelon, R. (2000). Ibn al-Haytham et ses arguments cosmologiques [Ibn al-Haytham and his cosmological arguments]. Épistémologiques, 1(1–2), 101. https://doi.org/10.11606/issn.1982-3568.epistemologiques.2000.105067
Morrison, R. (2014a). A scholarly intermediary between the Ottoman Empire and Renaissance Europe. Isis, 105(1), 32–57. https://doi.org/10.1086/675550
Morrison, R. (2014b). What was the purpose of astronomy in Ījī’s Kitāb al-Mawāqif fī ʿIlm al-Kalām? In J. Pfeiffer (Ed.), Politics, patronage and the transmission of knowledge in 13th—15th Century Tabriz (pp. 201–229). Brill. https://doi.org/10.1163/9789004262577_009
Mozaffari, S. M. (2013). Limitations of methods: The accuracy of the values measured for the earth’s/sun’s orbital elements in the Middle East, A.D. 800–1500, Part 1. Journal for the History of Astronomy, 44(3), 313–336. https://doi.org/10.1177/002182861304400305
Mozaffari, S. M. (2016). Planetary latitudes in medieval Islamic astronomy: An analysis of the non-Ptolemaic latitude parameter values in the Maragha and Samarqand astronomical traditions. Archive for History of Exact Sciences, 70(5), 513–541. https://doi.org/10.1007/s00407-015-0172-x
Mozaffari, S. M. (2017). Holding or breaking with Ptolemy’s generalization: Considerations about the motion of the planetary apsidal lines in medieval Islamic astronomy. Science in Context, 30(1), 1–32. https://doi.org/10.1017/S0269889717000011
Mozaffari, S. M. (2018). An analysis of medieval solar theories. Archive for History of Exact Sciences, 72(2), 191–243. https://doi.org/10.1007/s00407-018-0207-1
Mozaffari, S. M. (2019). The orbital elements of venus in Medieval Islamic astronomy: Interaction between traditions and the accuracy of observations. Journal for the History of Astronomy, 50(1), 46–81. https://doi.org/10.1177/0021828618808877
Neugebauer, O. (1945). The History of Ancient astronomy problems and methods. Journal of Near Eastern Studies, 4(1), 1–38. https://doi.org/10.1086/370729
Neugebauer, O. (1957). The exact sciences in antiquity. Brown University Press.
Neugebauer, O. (1969). The exact sciences in Antiquity (2nd ed.). Dover Publications.
Neugebauer, O. (1975). A History of Ancient mathematical astronomy. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-61910-6
Neugebauer, O. (1983). Astronomy and history selected essays. Springer New York. https://doi.org/10.1007/978-1-4612-5559-8
Nikfahm-Khubravan, S., & Ragep, F. J. (2019). The Mercury models of Ibn Al-Šāṭir and Copernicus. Arabic Sciences and Philosophy, 29(1), 1–59. https://doi.org/10.1017/S0957423918000085
Pormann, P., & Savage-Smith, E. (2007). Medieval Islamic medicine. Edinburgh University Press. https://doi.org/10.1515/9780748629244
Ragep, F. J. (1987). The Two versions of the Tūsi couple. Annals of the New York Academy of Sciences, 500(1), 329–356. https://doi.org/10.1111/j.1749-6632.1987.tb37210.x
Ragep, F. J. (2001a). Freeing astronomy from philosophy: An aspect of Islamic influence on science. Osiris, 16(1), 49–71. https://doi.org/10.1086/649338
Ragep, F. J. (2001b). Tūsī and Copernicus: The earth’s motion in context. Science in Context, 14(1–2), 145–163. https://doi.org/10.1017/S0269889701000060
Ragep, F. J. (2005). c Alīqushjī and Regiomontanus: Eccentric transformations and Copernican revolutions. Journal for the History of Astronomy, 36(4), 359–371. https://doi.org/10.1177/002182860503600401
Ragep, F. J. (2007). Copernicus and his Islamic predecessors: Some historical remarks. History of Science, 45(1), 65–81. https://doi.org/10.1177/007327530704500103
Ragep, F. J. (2009). David C. Lindberg. The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, Prehistory to a.d. 1450 . Second edition. Xvi + 488 pp., figs., bibl., index. Chicago/London: University of Chicago Press, 2007. $25 (paper). Isis, 100(2), 383–385. https://doi.org/10.1086/605220
Ragep, F. J. (2016). Ibn al-Shāṭir and Copernicus: The Uppsala notes revisited. Journal for the History of Astronomy, 47(4), 395–415. https://doi.org/10.1177/0021828616678508
Rahman, S., Street, T., & Tahiri, H. (Eds.). (2008). The unity of science in the Arabic tradition: Science, logic, epistemology and their interactions. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8405-8
Rapoport, Y., & Savage-Smith, E. (Eds.). (2014). An eleventh-century Egyptian guide to the universe: The Book of curiosities. Brill.
Rashed, R. (2014). Classical mathematics from Al-Khwarizmi to Descartes. Routledge. https://doi.org/10.4324/9781315753867
Rashed, R., & Morelon, R. (1996). Encyclopedia of the history of Arabic science Volume 3 Technology, alchemy and life sciences (1st ed.). Routledge. https://doi.org/10.4324/9780203086537
Renan, E. (1883). Islam and science. A lecture presented at La Sorbonne on 29 March 1883.
Roberts, V. (1957). The Solar and lunar theory of Ibn ash-Shāṭir: A Pre-Copernican Copernican model. Isis, 48(4), 428–432. https://doi.org/10.1086/348609
Roberts, V. (1966). The Planetary theory of Ibn al-Shatir: Latitudes of the planets. Isis, 57(2), 208–219. https://doi.org/10.1086/350114
Sabra, A. I. (1984). The Andalusian revolt against Ptolemaic astronomy: Averroes and al-Bitruji. In E. Mendelsohn (Ed.), Transformation and tradition in the sciences: Essays in honor of I. Bernard Cohen (pp. 233–253). Cambridge University Press.
Sabra, A. I. (1987). The Appropriation and subsequent naturalization of Greek Science in Medieval Islam: A preliminary statement. History of Science, 25(3), 223–243. https://doi.org/10.1177/007327538702500301
Sabra, A. I. (1989). The Optics Of Ibn Al Haytham, Books I-III, On direct vision. The Warburg Institute, University of London. http://archive.org/details/A.I.Sabraed.Trans.TheOpticsOfIbnAlHaythamBooksIIIIOnDirectVision.TranslatedWithI
Sabra, A. I. (1996). Situating Arabic science: Locality versus essence. Isis, 87(4), 654–670. https://doi.org/10.1086/357651
Saliba, G. (1979). The First Non-Ptolemaic astronomy at the Maraghah school. Isis, 70(4), 571–576. https://doi.org/10.1086/352344
Saliba, G. (1995). A History of Arabic astronomy: Planetary theories during the Golden Age of Islam. NYU Press.
Saliba, G. (1999). Critiques of Ptolemaic astronomy in Islamic Spain. Al-Qanṭara, 20(1), 3. https://doi.org/10.3989/alqantara.1999.v20.i1.449
Saliba, G. (2000). Arabic versus Greek Astronomy: A Debate over the foundations of science. Perspectives on Science, 8(4), 328–341. https://doi.org/10.1162/106361400753373713
Saliba, G. (2002). Greek astronomy and the Medieval Arabic tradition. American Scientist, 90(4), 360. https://doi.org/10.1511/2002.27.850
Saliba, G. (2007). Islamic science and the making of the European Renaissance. The MIT Press. https://doi.org/10.7551/mitpress/3981.001.0001
Saliba, G. (2009). Islamic reception of Greek astronomy. Proceedings of the International Astronomical Union, 5(S260), 149–165. https://doi.org/10.1017/S1743921311002237
Samsó, J. (2018). Astronomy and astrology in al-Andalus and the Maghrib (2nd ed.). Routledge.
Sarton, G. (1966). 5. Islamic science. In T. C. Young, Near Eastern Culture and Society (pp. 83–98). Princeton University Press. https://doi.org/10.1515/9781400886845-007
Savage-Smith, E. (1988). Gleanings from an Arabist’s workshop: Current trends in the study of Medieval Islamic science and medicine. Isis, 79(2), 246–266. https://doi.org/10.1086/354701
Savage-Smith, E. (2002). Galen’s lost Ophthalmology and the Summaria Alexandrinorum. Bulletin of the Institute of Classical Studies, 45(Supplement_77), 121–138. https://doi.org/10.1111/j.2041-5370.2002.tb02285.x
Savage-Smith, E. (2013). Medicine in Medieval Islam. In D. C. Lindberg & M. H. Shank (Eds.), The Cambridge history of science: Volume 2, Medieval science (pp. 139–167). Cambridge University Press.
Schuster, J. A. (1979). Kuhn and Lakatos and the history of science: Kuhn and Lakatos revisited. The British Journal for the History of Science, 12(3), 301–317. https://doi.org/10.1017/S0007087400017374
Schuster, J. A. (2016). [Review of Review of Thomas Kuhn’s Revolutions: A Historical and an Evolutionary Philosophy of Science?, by J. A. Marcum]. Notre Dame Philosophical Reviews. https://ndpr.nd.edu/reviews/thomas-kuhns-revolutions-a-historical-and-an-evolutionary-philosophy-of-science/
Selin, H. (Ed.). (2008). Encyclopaedia of the history of science, technology, and medicine in Non-Western cultures. Springer Netherlands. https://doi.org/10.1007/978-94-007-3934-5
Smith, A. (1869). The Essays of Adam Smith (J. Black & J. Hutton, Eds.). Alex Murray & Son. https://www.gutenberg.org/ebooks/58559
Swerdlow, N. M. (1973). The Derivation and first draft of Copernicus’s planetary theory: A translation of the Commentariolus with commentary. Proceedings of the American Philosophical Society, 117(6), 423–512. https://www.jstor.org/stable/986461
Swerdlow, N. M. (2017). Copernicus’s derivation of the heliocentric theory from regiomontanus’s eccentric models of the second inequality of the superior and inferior planets. Journal for the History of Astronomy, 48(1), 33–61. https://doi.org/10.1177/0021828617691203
Swerdlow, N. M., & Neugebauer, O. (1984). Mathematical astronomy in Copernicus’s De Revolutionibus (Vol. 10). Springer New York. https://doi.org/10.1007/978-1-4613-8262-1
von Grunebaum, G. E. (1924). Medieval Islam: A study in cultural orientation. University of Chicago Press.
References
Abdalla, M. (2004). The fate of islamic science between the Eleventh and Sixteenth Centuries: A comprehensive review of scholarship from Ibn Khaldun to the present. Humanomics, 20(3), 26–57. https://doi.org/10.1108/eb018895
Abdalla, M. (2008). Islamic science: The Myth of the decline theory. VDM Verlag.
Adamson, P. (2021). Abu Bakr al-Razi. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2025/entries/abu-bakr-al-razi/
Al-Ḥasan, A. Y., & Hill, D. R. (1994). Islamic technology: An illustrated history (Repr). Cambridge Univ. Pr. [u.a.].
Ansari, A. S. B. (1976). Abu Bakr Muhammad Ibn Yahya Al-Razi: Universal scholar and scientist. Islamic Studies, 15(3), 155–166. https://www.jstor.org/stable/20847003
Applebaum, W. (2003). Encyclopedia of the scientific revolution: From Copernicus to Newton. Routledge. https://doi.org/10.4324/9780203801864
Bala, A. (2006). The Dialogue of civilizations in the birth of modern science. Palgrave Macmillan US. https://doi.org/10.1057/9780230601215
Bala, A. (Ed.). (2012). Asia, Europe, and the emergence of modern science. Palgrave Macmillan US. https://doi.org/10.1057/9781137031730
Burns, W. E. (2001). The Scientific revolution: An encyclopedia. ABC-CLIO.
Chemla, K., Morelon, R., & Allard, A. (1986). La tradition Arabe de Diophante d’Alexandrie: À propos de quatre livres des Arithmétiques perdus en Grec retrouvés en Arabe [The Arabic tradition of Diophantus of Alexandria: on four books of Arithmetic lost in Greek but found in Arabic]. L’antiquité classique, 55(1), 351–375. https://doi.org/10.3406/antiq.1986.2193
Djebbar, A. (1995). On mathematical activities in North Africa since the 9th century. First part: Mathematics in the medieval Maghreb. AMUCHMA Newsletter, 15, 3–42. https://www.researchgate.net/publication/293107783_On_mathematical_activities_in_North_Africa_since_the_9th_century_First_part_mathematics_in_the_medieval_Maghreb
Djebbar, A. (2013). Al-Khwârizmî – L’algèbre et le calcul indien. ACL-les Éditions du Kangourou.
Duhem, P. (1911). History of physics. In The Catholic Encyclopedia. Robert Appleton Company. https://www.newadvent.org/cathen/12047a.htm
Fakhry, M. (2004). A history of Islamic philosophy (3rd ed.). Columbia University Press.
Gingerich, O. (1986). Islamic astronomy. Scientific American, 254(4), 74–83. https://www.jstor.org/stable/24975932
Gouguenheim, S. (2008). Aristote au mont Saint-Michel: Les racines Grecques de l’Europe Chrétienne [Aristotle at Mont Saint-Michel: The Greek roots of Christian Europe]. Seuil.
Grant, E. (2008). The Fate of Ancient Greek natural philosophy in the Middle Ages: Islam and Western Christianity. The Review of Metaphysics, 61(3), 503–526. https://www.jstor.org/stable/20130975
Greppin, J. A. C., Savage-Smith, E., & Gueriguian, J. L. (Eds.). (1999). The diffusion of Greco-Roman medicine into the Middle East and the Caucasus. Caravan Books.
Hartner, W. (1969). Nasir al-Din al-Tusi’s lunar theory. Physis, 11, 287–304.
Hartner, W. (1973). Copernicus, the man, the work and its history. Proceedings of the American Philosophical Society, 117, 413–422.
Hartner, W. (1975). The Islamic astronomical background to Nicholas Copernicus. In O. Gingerich & J. Dobrzycki (Eds.), Tudia Copernicana XI11 (Colloquia Copernicana 111) (pp. 7–16). Ossolineum.
Haskins, C. H. (1927). The Renaissance of the Twelfth Century. Harvard University Press.
Hill, D. R. (1998). Studies in medieval Islamic technology: From Philo to al-Jazarī, from Alexandria to Diyār Bakr. Ashgate.
Hogendijk, J. P. (2002). Two Editions of Ibn al-Haytham’s Completion of the Conics. Historia Mathematica, 29(3), 247–265. https://doi.org/10.1006/hmat.2002.2352
Hogendijk, J. P. (2004). Ideals and realities in Ibn al-Haytham’s mathematical oeuvre. Early Science and Medicine, 9(1), 37–43. https://doi.org/10.1163/1573382041153160
Hogendijk, J. P. (2005). Applied mathematics in Eleventh Century Al-Andalus: Ibn Mucadh al-Jayyan and his computation of astrological houses and aspects. Centaurus, 47(2), 87–114. https://doi.org/10.1111/j.1600-0498.2005.470201.x
Hogendijk, J. P., & Sabra, A. I. (Eds.). (2003). The Enterprise of science in Islam: New perspectives. The MIT Press.
Huff, T. E. (2017). The Rise of early modern science: Islam, China, and the West (3rd ed.). Cambridge University Press.
Institut für Geschichte der Arabisch-Islamischen Wissenschaften. (2021, August 21). Islamic mathematics and astronomy [HTML]. Goethe-Universität. https://www.uni-frankfurt.de/58972120/ISLAMIC_MATHEMATICS_AND_ASTRONOMY
Iskandar, A. Z. (2008). Al‐Rāzī. In H. Selin (Ed.), Encyclopaedia of the history of science, technology, and medicine in Non-Western cultures (pp. 155–156). Springer Netherlands. https://doi.org/10.1007/978-1-4020-4425-0_9326
Kennedy, E. S. (1966). Late Medieval planetary theory. Isis, 57(3), 365–378. https://doi.org/10.1086/350144
Kennedy, E. S. (1983). Studies in the exact Islamic sciences. Syracuse University Press.
Kennedy, E. S. (1984). Two Persian astronomical treatises by Nasr al-Din al Tusi. Centaurus, 27(2), 109–120. https://doi.org/10.1111/j.1600-0498.1984.tb00763.x
Kennedy, E. S. (1998). Astronomy and astrology in the Medieval Islamic World (1st ed). Taylor & Francis Group.
Kennedy, E. S., & Roberts, V. (1959). The Planetary theory of Ibn al-Shāṭir. Isis, 50(3), 227–235. https://doi.org/10.1086/348774
King, D. A. (1986). Islamic mathematical astronomy. Variorum Reprints.
King, D. A. (1999). World-maps for finding the direction and distance to Mecca: Innovation and tradition in Islamic science. Brill. https://doi.org/10.1163/9789004450738
King, D. A. (2003). 14th-Century England or 9th-Century Baghdad? New insights on the elusive astronomical instrument called navicula de venetiis. Centaurus, 45(1–4), 204–226. https://doi.org/10.1111/j.1600-0498.2003.450117.x
King, D. A. (2004). In synchrony with the heavens, Voluume 1 Call of the Muezzin (Studies I-IX). Brill.
King, D. A. (2005). In synchrony with the heavens, Volume 2 Instruments of mass calculation (Studies X-XVIII). Brill.
King, D. A. (2007). Astrolabes and angels, epigrams and enigmas: From Regiomontanus’ acrostic for Cardinal Bessarion to Piero della Francesca’s flagellation of Christ. Franz Steiner Verlag.
King, D. A. (2010). Edward Stewart Kennedy (1912–2009). Journal for the History of Astronomy, 41(1), 117–119. https://doi.org/10.1177/002182861004100106
King, D. A. (2011). Astrolabes from medieval Europe. Ashgate Variorum.
Langermann, Y. T. (2018). Babylonian and Indian wisdoms in Islamicate culture. Oriens, 46(3–4), 435–475. https://doi.org/10.1163/18778372-04603004
Lindberg, D. C. (2007). The Beginnings of Western science: The European scientific tradition in philosophical, religious, and institutional context, Prehistory to A.D. 1450 (2nd ed.). University of Chicago Press.
Lizzini, O. (2020). Ibn Sina’s metaphysics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2021/entries/ibn-sina-metaphysics/
Lucas, A. (2006). Wind, water, work: Ancient and medieval milling technology. Brill. https://doi.org/10.1163/9789047417224
Marmura, M. E. (2000). Translator’s introduction (M. E. Marmura, Trans.). In A. H. M. al-Ghazali, The Incoherence of the philosophers (2nd ed., pp. xv–xxvii). Brigham Young University.
McGinnis, J. (2010). Avicenna. Oxford University Press.
McGinnis, J. (2020). Ibn Sina’s natural philosophy. In E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2025/entries/ibn-sina-natural/
Meyerhof, M. (1928). An Arabic compendium of medico-philosophical definitions. Isis, 10(2), 340–349. https://doi.org/10.1086/346327
Meyerhof, M. (1931). Science and medicine. In T. Arnold & A. Guillaume (Eds.), The Legacy Of Islam (pp. 311–355). Oxford University Press.
Meyerhof, M. (1935). Thirty-three clinical observations by Rhazes (Circa 900 A.D.). Isis, 23(2), 321–372. https://doi.org/10.1086/346968
Morelon, R. (1994). Ṯābit B. Qurra and Arab astronomy in the 9th Century. Arabic Sciences and Philosophy, 4(1), 111–139. https://doi.org/10.1017/S0957423900001879
Morelon, R. (2000). Ibn al-Haytham et ses arguments cosmologiques [Ibn al-Haytham and his cosmological arguments]. Épistémologiques, 1(1–2), 101. https://doi.org/10.11606/issn.1982-3568.epistemologiques.2000.105067
Morrison, R. (2014a). A scholarly intermediary between the Ottoman Empire and Renaissance Europe. Isis, 105(1), 32–57. https://doi.org/10.1086/675550
Morrison, R. (2014b). What was the purpose of astronomy in Ījī’s Kitāb al-Mawāqif fī ʿIlm al-Kalām? In J. Pfeiffer (Ed.), Politics, patronage and the transmission of knowledge in 13th—15th Century Tabriz (pp. 201–229). Brill. https://doi.org/10.1163/9789004262577_009
Mozaffari, S. M. (2013). Limitations of methods: The accuracy of the values measured for the earth’s/sun’s orbital elements in the Middle East, A.D. 800–1500, Part 1. Journal for the History of Astronomy, 44(3), 313–336. https://doi.org/10.1177/002182861304400305
Mozaffari, S. M. (2016). Planetary latitudes in medieval Islamic astronomy: An analysis of the non-Ptolemaic latitude parameter values in the Maragha and Samarqand astronomical traditions. Archive for History of Exact Sciences, 70(5), 513–541. https://doi.org/10.1007/s00407-015-0172-x
Mozaffari, S. M. (2017). Holding or breaking with Ptolemy’s generalization: Considerations about the motion of the planetary apsidal lines in medieval Islamic astronomy. Science in Context, 30(1), 1–32. https://doi.org/10.1017/S0269889717000011
Mozaffari, S. M. (2018). An analysis of medieval solar theories. Archive for History of Exact Sciences, 72(2), 191–243. https://doi.org/10.1007/s00407-018-0207-1
Mozaffari, S. M. (2019). The orbital elements of venus in Medieval Islamic astronomy: Interaction between traditions and the accuracy of observations. Journal for the History of Astronomy, 50(1), 46–81. https://doi.org/10.1177/0021828618808877
Neugebauer, O. (1945). The History of Ancient astronomy problems and methods. Journal of Near Eastern Studies, 4(1), 1–38. https://doi.org/10.1086/370729
Neugebauer, O. (1957). The exact sciences in antiquity. Brown University Press.
Neugebauer, O. (1969). The exact sciences in Antiquity (2nd ed.). Dover Publications.
Neugebauer, O. (1975). A History of Ancient mathematical astronomy. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-61910-6
Neugebauer, O. (1983). Astronomy and history selected essays. Springer New York. https://doi.org/10.1007/978-1-4612-5559-8
Nikfahm-Khubravan, S., & Ragep, F. J. (2019). The Mercury models of Ibn Al-Šāṭir and Copernicus. Arabic Sciences and Philosophy, 29(1), 1–59. https://doi.org/10.1017/S0957423918000085
Pormann, P., & Savage-Smith, E. (2007). Medieval Islamic medicine. Edinburgh University Press. https://doi.org/10.1515/9780748629244
Ragep, F. J. (1987). The Two versions of the Tūsi couple. Annals of the New York Academy of Sciences, 500(1), 329–356. https://doi.org/10.1111/j.1749-6632.1987.tb37210.x
Ragep, F. J. (2001a). Freeing astronomy from philosophy: An aspect of Islamic influence on science. Osiris, 16(1), 49–71. https://doi.org/10.1086/649338
Ragep, F. J. (2001b). Tūsī and Copernicus: The earth’s motion in context. Science in Context, 14(1–2), 145–163. https://doi.org/10.1017/S0269889701000060
Ragep, F. J. (2005). c Alīqushjī and Regiomontanus: Eccentric transformations and Copernican revolutions. Journal for the History of Astronomy, 36(4), 359–371. https://doi.org/10.1177/002182860503600401
Ragep, F. J. (2007). Copernicus and his Islamic predecessors: Some historical remarks. History of Science, 45(1), 65–81. https://doi.org/10.1177/007327530704500103
Ragep, F. J. (2009). David C. Lindberg. The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, Prehistory to a.d. 1450 . Second edition. Xvi + 488 pp., figs., bibl., index. Chicago/London: University of Chicago Press, 2007. $25 (paper). Isis, 100(2), 383–385. https://doi.org/10.1086/605220
Ragep, F. J. (2016). Ibn al-Shāṭir and Copernicus: The Uppsala notes revisited. Journal for the History of Astronomy, 47(4), 395–415. https://doi.org/10.1177/0021828616678508
Rahman, S., Street, T., & Tahiri, H. (Eds.). (2008). The unity of science in the Arabic tradition: Science, logic, epistemology and their interactions. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8405-8
Rapoport, Y., & Savage-Smith, E. (Eds.). (2014). An eleventh-century Egyptian guide to the universe: The Book of curiosities. Brill.
Rashed, R. (2014). Classical mathematics from Al-Khwarizmi to Descartes. Routledge. https://doi.org/10.4324/9781315753867
Rashed, R., & Morelon, R. (1996). Encyclopedia of the history of Arabic science Volume 3 Technology, alchemy and life sciences (1st ed.). Routledge. https://doi.org/10.4324/9780203086537
Renan, E. (1883). Islam and science. A lecture presented at La Sorbonne on 29 March 1883.
Roberts, V. (1957). The Solar and lunar theory of Ibn ash-Shāṭir: A Pre-Copernican Copernican model. Isis, 48(4), 428–432. https://doi.org/10.1086/348609
Roberts, V. (1966). The Planetary theory of Ibn al-Shatir: Latitudes of the planets. Isis, 57(2), 208–219. https://doi.org/10.1086/350114
Sabra, A. I. (1984). The Andalusian revolt against Ptolemaic astronomy: Averroes and al-Bitruji. In E. Mendelsohn (Ed.), Transformation and tradition in the sciences: Essays in honor of I. Bernard Cohen (pp. 233–253). Cambridge University Press.
Sabra, A. I. (1987). The Appropriation and subsequent naturalization of Greek Science in Medieval Islam: A preliminary statement. History of Science, 25(3), 223–243. https://doi.org/10.1177/007327538702500301
Sabra, A. I. (1989). The Optics Of Ibn Al Haytham, Books I-III, On direct vision. The Warburg Institute, University of London. http://archive.org/details/A.I.Sabraed.Trans.TheOpticsOfIbnAlHaythamBooksIIIIOnDirectVision.TranslatedWithI
Sabra, A. I. (1996). Situating Arabic science: Locality versus essence. Isis, 87(4), 654–670. https://doi.org/10.1086/357651
Saliba, G. (1979). The First Non-Ptolemaic astronomy at the Maraghah school. Isis, 70(4), 571–576. https://doi.org/10.1086/352344
Saliba, G. (1995). A History of Arabic astronomy: Planetary theories during the Golden Age of Islam. NYU Press.
Saliba, G. (1999). Critiques of Ptolemaic astronomy in Islamic Spain. Al-Qanṭara, 20(1), 3. https://doi.org/10.3989/alqantara.1999.v20.i1.449
Saliba, G. (2000). Arabic versus Greek Astronomy: A Debate over the foundations of science. Perspectives on Science, 8(4), 328–341. https://doi.org/10.1162/106361400753373713
Saliba, G. (2002). Greek astronomy and the Medieval Arabic tradition. American Scientist, 90(4), 360. https://doi.org/10.1511/2002.27.850
Saliba, G. (2007). Islamic science and the making of the European Renaissance. The MIT Press. https://doi.org/10.7551/mitpress/3981.001.0001
Saliba, G. (2009). Islamic reception of Greek astronomy. Proceedings of the International Astronomical Union, 5(S260), 149–165. https://doi.org/10.1017/S1743921311002237
Samsó, J. (2018). Astronomy and astrology in al-Andalus and the Maghrib (2nd ed.). Routledge.
Sarton, G. (1966). 5. Islamic science. In T. C. Young, Near Eastern Culture and Society (pp. 83–98). Princeton University Press. https://doi.org/10.1515/9781400886845-007
Savage-Smith, E. (1988). Gleanings from an Arabist’s workshop: Current trends in the study of Medieval Islamic science and medicine. Isis, 79(2), 246–266. https://doi.org/10.1086/354701
Savage-Smith, E. (2002). Galen’s lost Ophthalmology and the Summaria Alexandrinorum. Bulletin of the Institute of Classical Studies, 45(Supplement_77), 121–138. https://doi.org/10.1111/j.2041-5370.2002.tb02285.x
Savage-Smith, E. (2013). Medicine in Medieval Islam. In D. C. Lindberg & M. H. Shank (Eds.), The Cambridge history of science: Volume 2, Medieval science (pp. 139–167). Cambridge University Press.
Schuster, J. A. (1979). Kuhn and Lakatos and the history of science: Kuhn and Lakatos revisited. The British Journal for the History of Science, 12(3), 301–317. https://doi.org/10.1017/S0007087400017374
Schuster, J. A. (2016). [Review of Review of Thomas Kuhn’s Revolutions: A Historical and an Evolutionary Philosophy of Science?, by J. A. Marcum]. Notre Dame Philosophical Reviews. https://ndpr.nd.edu/reviews/thomas-kuhns-revolutions-a-historical-and-an-evolutionary-philosophy-of-science/
Selin, H. (Ed.). (2008). Encyclopaedia of the history of science, technology, and medicine in Non-Western cultures. Springer Netherlands. https://doi.org/10.1007/978-94-007-3934-5
Smith, A. (1869). The Essays of Adam Smith (J. Black & J. Hutton, Eds.). Alex Murray & Son. https://www.gutenberg.org/ebooks/58559
Swerdlow, N. M. (1973). The Derivation and first draft of Copernicus’s planetary theory: A translation of the Commentariolus with commentary. Proceedings of the American Philosophical Society, 117(6), 423–512. https://www.jstor.org/stable/986461
Swerdlow, N. M. (2017). Copernicus’s derivation of the heliocentric theory from regiomontanus’s eccentric models of the second inequality of the superior and inferior planets. Journal for the History of Astronomy, 48(1), 33–61. https://doi.org/10.1177/0021828617691203
Swerdlow, N. M., & Neugebauer, O. (1984). Mathematical astronomy in Copernicus’s De Revolutionibus (Vol. 10). Springer New York. https://doi.org/10.1007/978-1-4613-8262-1
von Grunebaum, G. E. (1924). Medieval Islam: A study in cultural orientation. University of Chicago Press.